Skip to main content
Log in

Engineering Aspects of Incidence, Prevalence, and Management of Osteoarthritis: A Review

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The knee is the biggest and complicated lower extremity joint that supports mobility and the entire weight of the human body and lies between the hip joint and ankle joint. Osteoarthritis (OA) is the most common joint disease in the knee among various musculoskeletal disorders globally, with an age-associated increase in incidence and prevalence. Health monitoring of the knee joints in daily life, and early OA diagnosis is challenging and draws attention to the various methods of diagnosis for this irreversible disease. In this review, electronic databases have been searched from inception for a detailed study about knee OA and its management. It focuses on various sensor technologies and different semi-invasive and non-invasive diagnosis methods with their limitations. In the last decade, various researchers have engrossed their attention to the potential of piezoelectric-based acoustic sensors to fabricate a wearable device for OA and its management. A sensor-based wearable device using vibroarthrography as a tool can be an appropriate solution for early-stage disease detection. We firmly believe that wearable technology for the detection of OA in daily life activities will play a significant role in managing this disease and help to reduce the chances of total knee replacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abiddin, W. Z. W. Z., R. Jailani, A. R. Omar, and I. M. Yassin. Development of MATLAB Kinect skeletal tracking system (MKSTS) for gait analysis. In: 2016 IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE). IEEE, 2016, pp. 216–220. https://doi.org/10.1109/ISCAIE.2016.7575066.

  2. Abulhasan, J. F., and M. J. Grey. Anatomy and physiology of knee stability. J. Funct. Morphol. Kinesiol. 2(4):34, 2017. https://doi.org/10.3390/jfmk2040034.

    Article  Google Scholar 

  3. Ackerman, I. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Aust. J. Physiother. 55(3):213, 2009. https://doi.org/10.1016/s0004-9514(09)70088-1.

    Article  PubMed  Google Scholar 

  4. Aimoto, K., S. Ota, K. Hase, T. Sakai, K. Kodama, and H. Nakamura. Development of an impulse response method for assessing knee osteoarthritis at the femorotibial joint: comparison between healthy young adults and older women with clinical knee osteoarthritis. J. Med. Biol. Eng. 40(1):35–40, 2020. https://doi.org/10.1007/s40846-019-00484-9.

    Article  Google Scholar 

  5. Ali, F., W. Raza, X. Li, H. Gul, and K. H. Kim. Piezoelectric energy harvesters for biomedical applications. Nano Energy 57:879–902, 2019. https://doi.org/10.1016/j.nanoen.2019.01.012.

    Article  CAS  Google Scholar 

  6. Allen, K. D., and Y. M. Golightly. Epidemiology of osteoarthritis: state of the evidence. Curr. Opin. Rheumatol. 27(3):276, 2015. https://doi.org/10.1097/BOR.0000000000000161.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Almeida, B., Y. Wang, and A. Shukla. Effects of nanoparticle properties on kartogenin delivery and interactions with mesenchymal stem cells. Ann. Biomed. Eng. 48(7):2090–2102, 2020. https://doi.org/10.1007/s10439-019-02430-x.

    Article  PubMed  Google Scholar 

  8. Anas, M. N. Development of a non-invasive bio-acoustics measurement system for assessing articular cartilage knee joint problem, 2014. https://doi.org/10.11113/jt.v68.1974.

  9. Andersen, R. E., L. Arendt-Nielsen, and P. Madeleine. A review of engineering aspects of vibroarthrography of the knee joint. Crit. Rev. Phys. Rehabil. Med. 2016. https://doi.org/10.1615/CritRevPhysRehabilMed.2016017185.

    Article  Google Scholar 

  10. Baczkowicz, D., E. Majorczyk, and K. Krecisz. Age-related impairment of quality of joint motion in vibroarthrographic signal analysis. BioMed Res. Int. 2015. https://doi.org/10.1155/2015/591707.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bakhshi, S., and M. H. Mahoor. Development of a wearable sensor system for measuring body joint flexion. In: 2011 International Conference on Body Sensor Networks. IEEE, 2011, pp. 35–40. https://doi.org/10.1109/BSN.2011.20.

  12. Bakhshi, S., M. H. Mahoor, and B. S. Davidson. Development of a body joint angle measurement system using IMU sensors. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011, pp. 6923–6926. https://doi.org/10.1109/IEMBS.2011.6091743.

  13. Bedson, J., and P.R. Croft. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet. Disord. 9(1):1–11, 2008. https://doi.org/10.1186/1471-2474-9-116.

    Article  Google Scholar 

  14. Befrui, N., J. Elsner, A. Flesser, J. Huvanandana, O. Jarrousse, T. N. Le, M. Müller, W. H. Schulze, S. Taing, and S. Weidert. Vibroarthrography for early detection of knee osteoarthritis using normalized frequency features. Med. Biol. Eng. Comput. 56(8):1499–1514, 2018. https://doi.org/10.1007/s11517-018-1785-4.

    Article  PubMed  Google Scholar 

  15. Bergmann, J. H., S. Anastasova-Ivanova, I. Spulber, V. Gulati, P. Georgiou, and A. McGregor. An attachable clothing sensor system for measuring knee joint angles. IEEE Sens. J. 13(10):4090–4097, 2013. https://doi.org/10.1109/JSEN.2013.2277697.

    Article  Google Scholar 

  16. Bilro, L., J. Oliveira, J. Pinto, and R. Nogueira. A reliable low-cost wireless and wearable gait monitoring system based on a plastic optical fibre sensor. Meas. Sci. Technol. 22(4):045801, 2011. https://doi.org/10.1088/0957-0233/22/4/045801.

    Article  CAS  Google Scholar 

  17. Blodgett, W. E.: Auscultation of the knee joint. Boston Med. Surg. J. 146(3):63–66, 1902. https://doi.org/10.1056/NEJM190201161460304.

    Article  Google Scholar 

  18. Bonnet, V., V. Joukov, D. Kulić, P. Fraisse, N. Ramdani, and G. Venture. Monitoring of hip and knee joint angles using a single inertial measurement unit during lower limb rehabilitation. IEEE Sens. J. 16(6):1557–1564, 2015. https://doi.org/10.1109/JSEN.2015.2503765.

    Article  Google Scholar 

  19. Bredella, M., P. Tirman, C. Peterfy, M. Zarlingo, J. Feller, F. Bost, J. Belzer, T. Wischer, and H. Genant. Accuracy of t2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. Am. J. Roentgenol. 172(4):1073–1080, 1999. https://doi.org/10.2214/ajr.172.4.10587150.

    Article  CAS  Google Scholar 

  20. Brennan-Olsen, S. L., S. Cook, M. Leech, S. J. Bowe, P. Kowal, N. Naidoo, I. Ackerman, R. Page, S. Hosking, J. Pasco, et al.: Prevalence of arthritis according to age, sex and socioeconomic status in six low and middle income countries: analysis of data from the World Health Organization study on global ageing and adult health (SAGE) wave 1. BMC Musculoskelet. Disord. 18(1):1–12, 2017. https://doi.org/10.1186/s12891-017-1624-z.

    Article  Google Scholar 

  21. Buckland-Wright, J., D. Macfarlane, S. Williams, and R. Ward. Accuracy and precision of joint space width measurements in standard and macroradiographs of osteoarthritic knees. Ann. Rheum. Dis. 54(11):872–880, 1995. https://doi.org/10.1136/ard.54.11.872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buckwalter, J. A., H. J. Mankin, and A. J. Grodzinsky. Articular cartilage and osteoarthritis. Instr. Course. Lect. 54:465–480, 2005.

    PubMed  Google Scholar 

  23. Cashman, P. M., R. I. Kitney, M. A. Gariba, and M. E. Carter. Automated techniques for visualization and mapping of articular cartilage in MR images of the osteoarthritic knee: a base technique for the assessment of microdamage and submicro damage. IEEE Trans. Nanobiosci. 99(1):42–51, 2002. https://doi.org/10.1109/TNB.2002.806916.

    Article  Google Scholar 

  24. Castañeda, J., A. Ruiz-Olaya, C. Lara-Herrera, and F. Roldán. Knee joint angle monitoring system based on inertial measurement units for human gait analysis. In: VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, 26–28 October 2016. Springer, 2017, pp. 690–693. https://doi.org/10.1007/978-981-10-4086-3_173.

  25. Chaisson, C., D. Gale, E. Gale, L. Kazis, K. Skinner, and D. Felson. Detecting radiographic knee osteoarthritis: what combination of views is optimal? Rheumatology 39(11):1218–1221, 2000. https://doi.org/10.1093/rheumatology/39.11.1218.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, F. H., K. T. Rousche, and R. S. Tuan. Technology insight: adult stem cells in cartilage regeneration and tissue engineering. Nat. Clin. Pract. Rheum. 2(7):373–382, 2006. https://doi.org/10.1038/ncprheum0216.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, P., L. Gao, X. Shi, K. Allen, and L. Yang. Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss. Comput. Med. Imaging Graph. 75:84–92, 2019. https://doi.org/10.1016/j.compmedimag.2019.06.002.

    Article  PubMed  Google Scholar 

  28. Cho, H. J., and D. S. Kwak. Mechanical properties and characteristics of the anterolateral and collateral ligaments of the knee. Appl. Sci. 10(18):6266, 2020. https://doi.org/10.3390/app10186266.

    Article  CAS  Google Scholar 

  29. Choi, D., S. Ahn, J. Ryu, M. Nagao, and Y. Kim. Knee acoustic emission characteristics of the healthy and the patients with osteoarthritis using piezoelectric sensor. Sens. Mater. 30(8):1629–1641, 2018. https://doi.org/10.18494/SAM.2018.1877.

    Article  Google Scholar 

  30. Chu, C. R., A. Williams, D. Tolliver, C. K. Kwoh, S. Bruno III, and J. J. Irrgang. Clinical optical coherence tomography of early articular cartilage degeneration in patients with degenerative meniscal tears. Arthritis Rheumatol. 62(5):1412–1420, 2010. https://doi.org/10.1002/art.27378.

    Article  Google Scholar 

  31. Chu, M., I. Gradisar, and R. Mostardi. A noninvasive electroacoustical evaluation technique of cartilage damage in pathological knee joints. Med. Biol. Eng. Comput. 16(4):437–442, 1978. https://doi.org/10.1007/bf02442662.

    Article  CAS  PubMed  Google Scholar 

  32. Constantin, D., and C. Molder. The analysis of the knee joint movement. MTA Rev. 13:117–122, 2016.

    Google Scholar 

  33. Crews, D. J. Real-time estimation of knee angle, heel-strike, and toe-off events for gait rehabilitation devices. M.S. Thesis, California State University, Long Beach, 2017.

  34. Cutcliffe, H. C., K. M. Davis, C. E. Spritzer, and L. DeFrate. The characteristic recovery time as a novel, noninvasive metric for assessing in vivo cartilage mechanical function. Ann. Biomed. Eng. 48(12):2901–2910, 2020. https://doi.org/10.1007/s10439-020-02558-1.

    Article  PubMed  PubMed Central  Google Scholar 

  35. De Moor, L., E. Beyls, and H. Declercq. Scaffold free microtissue formation for enhanced cartilage repair. Ann. Biomed. Eng. 48(1):298–311, 2020. https://doi.org/10.1007/s10439-019-02348-4.

    Article  PubMed  Google Scholar 

  36. Donno, M., E. Palange, F. Di Nicola, G. Bucci, and F. Ciancetta. A new flexible optical fiber goniometer for dynamic angular measurements: application to human joint movement monitoring. IEEE Trans. Instrum. Meas. 57(8):1614–1620, 2008. https://doi.org/10.1109/TIM.2008.925336.

    Article  Google Scholar 

  37. Doria, A.: State-of-the-art imaging techniques for the evaluation of haemophilic arthropathy: present and future. Haemophilia 16:107–114, 2010. https://doi.org/10.1111/j.1365-2516.2010.02307.x.

    Article  PubMed  Google Scholar 

  38. Ebrahimi, M., M. A. Finnilä, A. Turkiewicz, M. Englund, S. Saarakkala, R. K. Korhonen, and P. Tanska. Elastic, dynamic viscoelastic and model-derived fibril-reinforced poroelastic mechanical properties of normal and osteoarthritic human femoral condyle cartilage. Ann. Biomed. Eng. 2021. https://doi.org/10.1007/s10439-021-02838-4.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ebrahimi, M., S. Ojanen, A. Mohammadi, M. A. Finnilä, A. Joukainen, H. Kröger, S. Saarakkala, R. K. Korhonen, and P. Tanska. Elastic, viscoelastic and fibril-reinforced poroelastic material properties of healthy and osteoarthritic human tibial cartilage. Ann. Biomed. Eng. 47(4):953–966, 2019. https://doi.org/10.1007/s10439-019-02213-4.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ebrahimi, M., M. J. Turunen, M. A. Finnilä, A. Joukainen, H. Kröger, S. Saarakkala, R. K. Korhonen, and P. Tanska. Structure–function relationships of healthy and osteoarthritic human tibial cartilage: experimental and numerical investigation. Ann. Biomed. Eng. 48(12):2887–2900, 2020. https://doi.org/10.1007/s10439-020-02559-0.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Eckstein, F., C. Adam, H. Sittek, C. Becker, S. Milz, E. Schulte, M. Reiser, and R. Putz. Non-invasive determination of cartilage thickness throughout joint surfaces using magnetic resonance imaging. J. Biomech. 30(3):285–289, 1997. https://doi.org/10.1016/S0021-9290(97)81146-3.

    Article  CAS  PubMed  Google Scholar 

  42. Eckstein, F., J. Westhoff, H. Sittek, K. Maag, M. Haubner, S. Faber, K. Englmeier, and M. Reiser. In vivo reproducibility of three-dimensional cartilage volume and thickness measurements with MR imaging. Am. J. Roentgenol. 170(3):593–597, 1998. https://doi.org/10.2214/ajr.170.3.9490936.

    Article  CAS  Google Scholar 

  43. Favre, J., R. Aissaoui, B. M. Jolles, J. A. de Guise, and K. Aminian. Functional calibration procedure for 3D knee joint angle description using inertial sensors. J. Biomech. 42(14):2330–2335, 2009. https://doi.org/10.1016/j.jbiomech.2009.06.025.

    Article  CAS  PubMed  Google Scholar 

  44. Favre, J., B. Jolles, R. Aissaoui, and K. Aminian. Ambulatory measurement of 3D knee joint angle. J. Biomech. 41(5):1029–1035, 2008. https://doi.org/10.1016/j.jbiomech.2007.12.003.

    Article  CAS  PubMed  Google Scholar 

  45. Felson, D. T., Y. Zhang, M. T. Hannan, A. Naimark, B. Weissman, P. Aliabadi, and D. Levy. Risk factors for incident radiographic knee osteoarthritis in the elderly. The Framingham study. Arthritis Rheumatol. 40(4):728–733, 1997. https://doi.org/10.1002/art.1780400420.

    Article  CAS  Google Scholar 

  46. Fife, R. S., K. D. Brandt, E. M. Braunstein, B. P. Katz, K. D. Shelbourne, L. A. Kalasinski, and S. Ryan. Relationship between arthroscopic evidence of cartilage damage and radiographic evidence of joint space narrowing in early osteoarthritis of the knee. Arthritis Rheumatol. 34(4):377–382, 1991. https://doi.org/10.1002/art.1780340402.

    Article  CAS  Google Scholar 

  47. Freeman, M. A., and V. Pinskerova. The movement of the normal tibio-femoral joint. J. Biomech. 38(2):197–208, 2005. https://doi.org/10.1016/j.jbiomech.2004.02.006.

    Article  CAS  PubMed  Google Scholar 

  48. Fuentes-Mera, L., A. Camacho, N. K. Moncada-Saucedo, and V. Peña-Martínez. Current applications of mesenchymal stem cells for cartilage tissue engineering. In: Mesenchymal Stem Cells—Isolation, Characterization and Applications. IntechOpen, 2017, pp. 149–184. https://doi.org/10.5772/intechopen.68172.

  49. Gandek, B. Measurement properties of the Western Ontario and McMaster Universities Osteoarthritis Index: a systematic review. Arthritis Care Res. 67(2):216–229, 2015. https://doi.org/10.1002/acr.22415.

    Article  Google Scholar 

  50. Gerard, J. T. Principles of Anatomy and Physiology, 14th edition. Danvers: Wiley Incorporated, 2013.

    Google Scholar 

  51. Gibbs, P. T., and H. Asada. Wearable conductive fiber sensors for multi-axis human joint angle measurements. J. Neuroeng. Rehabil. 2(1):1–18, 2005. https://doi.org/10.1186/1743-0003-2-7.

    Article  Google Scholar 

  52. Gioberto, G. Garment-integrated wearable sensing for knee joint monitoring. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers: Adjunct Program, 2014, pp. 113–118. https://doi.org/10.1145/2641248.2642736.

  53. Glyn-Jones, S., A. Palmer, R. Agricola, A. Price, T. Vincent, H. Weinans, and A. Carr. Osteoarthritis. Lancet 386(9991):376–387, 2015. https://doi.org/10.1016/S0140-6736(14)60802-3.

    Article  CAS  PubMed  Google Scholar 

  54. Guermazi, A., D. Hayashi, F. W. Roemer, and D. T. Felson. Osteoarthritis: a review of strengths and weaknesses of different imaging options. Rheum. Dis. Clin. N. Am. 39(3):567–591, 2013. https://doi.org/10.1016/j.rdc.2013.02.001.

    Article  Google Scholar 

  55. Hossain, M. B., K. W. Lai, B. Pingguan-Murphy, Y. C. Hum, M. I. M. Salim, and Y. M. Liew. Contrast enhancement of ultrasound imaging of the knee joint cartilage for early detection of knee osteoarthritis. Biomed. Signal Process. 13:157–167, 2014. https://doi.org/10.1016/j.bspc.2014.04.008.

    Article  Google Scholar 

  56. Hossain, M. B., B. Pingguan-Murphy, H. Y. Chai, M. I. M. Salim, D. E. O. Dewi, E. Supriyanto, and K. W. Lai. Improved ultrasound imaging for knee osteoarthritis detection. In: Medical Imaging Technology. Springer, 2015, pp. 1–40. https://doi.org/10.1007/978-981-287-540-2.

  57. Hunter, J., and H. Brooks. Study of recorded noise in normal and pathologic knee joints of human subjects. J. Lab. Clin. Med. 47(2):289–296, 1956.

    CAS  PubMed  Google Scholar 

  58. Iagnocco, A., and E. Naredo. Osteoarthritis: research update and clinical applications. Rheumatology 51(Suppl 7):vii2–vii5, 2012. https://doi.org/10.1093/rheumatology/kes328.

    Article  PubMed  Google Scholar 

  59. Ibne Mokbul, M. Optical coherence tomography: basic concepts and applications in neuroscience research. J. Med. Eng. 2017. https://doi.org/10.1155/2017/3409327.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Islam, M. U., H. Mahmud, F. B. Ashraf, I. Hossain, and M. K. Hasan. Yoga posture recognition by detecting human joint points in real time using Microsoft Kinect. In: 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC). IEEE, 2017, pp. 668–673. https://doi.org/10.1109/R10-HTC.2017.8289047.

  61. Jeong, S. M., Y. Kang, T. Lim, and S. Ju. Hydrophobic microfiber strain sensor operating stably in sweat and water environment. Adv. Mater. Interfaces 5(24):1801376, 2018. https://doi.org/10.1002/admi.201801376.

    Article  CAS  Google Scholar 

  62. Karpiński, R., A. Machrowska, and M. Maciejewski. Application of acoustic signal processing methods in detecting differences between open and closed kinematic chain movement for the knee joint. Appl. Comput. Sci. 2019. https://doi.org/10.23743/acs-2019-03.

    Article  Google Scholar 

  63. Keen, H., R. Wakefield, and P. Conaghan. A systematic review of ultrasonography in osteoarthritis. Ann. Rheum. Dis. 68(5):611–619, 2009. https://doi.org/10.1136/ard.2008.102434.

    Article  CAS  PubMed  Google Scholar 

  64. Keen, H. I., and P. G. Conaghan. Usefulness of ultrasound in osteoarthritis. Rheum. Dis. Clin. N. Am. 35(3):503–519, 2009. https://doi.org/10.1016/j.rdc.2009.09.002.

    Article  Google Scholar 

  65. Kellgren, J., and J. Lawrence. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16(4):494, 1957. https://doi.org/10.1136/ard.16.4.494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kernohan, W., D. Barr, G. McCoy, and R. Mollan. Vibration arthrometry in assessment of knee disorders: the problem of angular velocity. J. Biomed. Eng. 13(1):35–38, 1991. https://doi.org/10.1016/0141-5425(91)90041-5.

    Article  CAS  PubMed  Google Scholar 

  67. Kernohan, W. G., D. E. Beverland, G. F. McCoy, A. Hamilton, P. Watson, and R. Mollan. Vibration arthrometry. Acta Orthop. Scand. 61(1):70–79, 1990. https://doi.org/10.3109/17453679008993071.

    Article  CAS  PubMed  Google Scholar 

  68. Kim, H. A., M. L. Cho, H. Y. Choi, C. S. Yoon, J. Y. Jhun, H. J. Oh, and H. Y. Kim. The catabolic pathway mediated by toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheumatol. 54(7):2152–2163, 2006. https://doi.org/10.1002/art.21951.

    Article  CAS  Google Scholar 

  69. Komeili, A., B. S. Otoo, Z. Abusara, S. Sibole, S. Federico, and W. Herzog. Chondrocyte deformations under mild dynamic loading conditions. Ann. Biomed. Eng. 49(2):846–857, 2021. https://doi.org/10.1007/s10439-020-02615-9.

    Article  PubMed  Google Scholar 

  70. Kothari, M., A. Guermazi, G. von Ingersleben, Y. Miaux, M. Sieffert, J. E. Block, R. Stevens, and C. G. Peterfy. Fixed-flexion radiography of the knee provides reproducible joint space width measurements in osteoarthritis. Eur. Radiol. 14(9):1568–1573, 2004. https://doi.org/10.1007/s00330-004-2312-6.

    Article  PubMed  Google Scholar 

  71. Leersum, M. V., M. Schweitzer, F. Gannon, G. Finkel, S. Vinitski, and D. Mitchell. Chondromalacia patellae: an in vitro study. Comparison of MR criteria with histologic and macroscopic findings. Skelet. Radiol. 25(8):727–732, 1996. https://doi.org/10.1007/s002560050169.

    Article  Google Scholar 

  72. Li, L., and W. Herzog. Arthroscopic evaluation of cartilage degeneration using indentation testing influence of indenter geometry. Clin. Biomech. 21(4):420–426, 2006. https://doi.org/10.1016/j.clinbiomech.2005.12.010.

    Article  CAS  Google Scholar 

  73. Li, M., B. He, X. Zhao, J. Xie, W. Yao, and G. Xu. A wearable fiber-optic sensor for monitoring human elbow and wrist joint motion. Adv. Robot. 2020. https://doi.org/10.1080/01691864.2020.1837671.

    Article  Google Scholar 

  74. Li, X., S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski. High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery. Arthritis Res. Ther. 7(2):1–6, 2005. https://doi.org/10.1186/ar1491.

    Article  Google Scholar 

  75. Lim, C. K., Z. Luo, I. M. Chen, and S. H. Yeo. A low cost wearable optical-based goniometer for human joint monitoring. Front. Mech. Eng. 6(1):13–22, 2011. https://doi.org/10.1007/s11465-011-0201-7.

    Article  Google Scholar 

  76. Liu-Bryan, R., K. Pritzker, G. S. Firestein, and R. Terkeltaub. TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J. Immunol. 174(8):5016–5023, 2005. https://doi.org/10.4049/jimmunol.174.8.5016.

    Article  CAS  PubMed  Google Scholar 

  77. Lund, F., and B. E. Nilsson. Arthroscopy of the patello-femoral joint. Acta Orthop. Scand. 51(1–6):297–302, 1980. https://doi.org/10.3109/17453678008990802.

    Article  CAS  PubMed  Google Scholar 

  78. Luria, A., and C. R. Chu. Articular cartilage changes in maturing athletes: new targets for joint rejuvenation. Sports Health 6(1):18–30, 2014. https://doi.org/10.1177/1941738113514369.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Maussavi, Z. M., R. M. Rangayyan, G. D. Bell, C. B. Frank, and K. O. Ladly. Screening of vibroarthrographic signals via adaptive segmentation and linear prediction modeling. IEEE Trans. Biomed. Eng. 43(1):15, 1996. https://doi.org/10.1109/10.477697.

    Article  Google Scholar 

  80. McConnell, S., P. Kolopack, and A. M. Davis. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC): a review of its utility and measurement properties. Arthritis Care Res. 45(5):453–461, 2001. https://doi.org/10.1002/1529-0131(200110)45:5<453::AID-ART365>3.0.CO;2-W.

    Article  CAS  Google Scholar 

  81. McCoy, G. F., J. D. McCrea, D. E. Beverland, W. G. Kernohan, and R. Mollan. Vibration arthrography as a diagnostic aid in diseases of the knee. A preliminary report. J. Bone Jt Surg. 69(2):288–293, 1987. https://doi.org/10.1302/0301-620X.69B2.3818762.

    Article  CAS  Google Scholar 

  82. Meenagh, G., E. Filippucci, A. Delle Sedie, L. Riente, A. Iagnocco, C. Scirè, C. Montecucco, S. Bombardieri, G. Valesini, and W. Grassi. Ultrasound imaging for the rheumatologist XIX. Imaging modalities in rheumatoid arthritis. Clin. Exp. Rheumatol. 27(1):3–6, 2009.

    CAS  PubMed  Google Scholar 

  83. Menezes, R., and T. L. Arinzeh. Comparative study of electrospun scaffolds containing native gags and a gag mimetic for human mesenchymal stem cell chondrogenesis. Ann. Biomed. Eng. 48(7):2040–2052, 2020. https://doi.org/10.1007/s10439-020-02499-9.

    Article  PubMed  Google Scholar 

  84. Mobini, A., S. Behzadipour, and M. Saadat Foumani. Accuracy of Kinect’s skeleton tracking for upper body rehabilitation applications. Disabil. Rehabil. Assist. Technol. 9(4):344–352, 2014. https://doi.org/10.3109/17483107.2013.805825.

    Article  PubMed  Google Scholar 

  85. Mohammadi, A., K. A. Myller, P. Tanska, J. Hirvasniemi, S. Saarakkala, J. Töyräs, R. K. Korhonen, and M. E. Mononen. Rapid CT-based estimation of articular cartilage biomechanics in the knee joint without cartilage segmentation. Ann. Biomed. Eng. 48(12):2965–2975, 2020. https://doi.org/10.1007/s10439-020-02666-y.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mollan, R., G. Kernohan, and P. Watters. Artefact encountered by the vibration detection system. J. Biomech. 16(3):193–199, 1983. https://doi.org/10.1016/0021-9290(83)90126-4.

    Article  CAS  PubMed  Google Scholar 

  87. Mollan, R., G. McCullagh, and R. Wilson. A critical appraisal of auscultation of human joints. Clin. Orthop. Relat. Res. 170:231–237, 1982. https://doi.org/10.1007/bf02442662.

    Article  Google Scholar 

  88. Möller, I., D. Bong, E. Naredo, E. Filippucci, I. Carrasco, C. Moragues, and A. Iagnocco. Ultrasound in the study and monitoring of osteoarthritis. Osteoarthr. Cartil. 16:S4–S7, 2008. https://doi.org/10.1016/j.joca.2008.06.005.

    Article  Google Scholar 

  89. Mononen, M. E., M. K. Liukkonen, and R. K. Korhonen. Utilizing atlas-based modeling to predict knee joint cartilage degeneration: data from the Osteoarthritis Initiative. Ann. Biomed. Eng. 47(3):813–825, 2019. https://doi.org/10.1007/s10439-018-02184-y.

    Article  PubMed  Google Scholar 

  90. Montazerian, H., A. Dalili, A. Milani, and M. Hoorfar. Piezoresistive sensing in chopped carbon fiber embedded PDMS yarns. Composites B 164:648–658, 2019. https://doi.org/10.1016/j.compositesb.2019.01.090.

    Article  CAS  Google Scholar 

  91. Mukhopadhyay, S. C. Wearable sensors for human activity monitoring: a review. IEEE Sens. J. 15(3):1321–1330, 2014. https://doi.org/10.1109/JSEN.2014.2370945.

    Article  Google Scholar 

  92. Murray, C. J., T. Vos, R. Lozano, M. Naghavi, A. D. Flaxman, C. Michaud, M. Ezzati, K. Shibuya, J. A. Salomon, S. Abdalla, et al.: Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2197–2223, 2012. https://doi.org/10.1016/S0140-6736(12)61689-4.

    Article  PubMed  Google Scholar 

  93. Nagaosa, Y., P. Lanyon, and M. Doherty. Characterisation of size and direction of osteophyte in knee osteoarthritis: a radiographic study. Ann. Rheum. Dis. 61(4):319–324, 2002. https://doi.org/10.1136/ard.61.4.319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Neidlin, M., E. Chantzi, G. Macheras, M. G. Gustafsson, and L. G. Alexopoulos. A novel multiplex based platform for osteoarthritis drug candidate evaluation. Ann. Biomed. Eng. 48:2438–2448, 2020. https://doi.org/10.1007/s10439-020-02539-4.

    Article  PubMed  Google Scholar 

  95. Nippolainen, E., R. Shaikh, V. Virtanen, L. Rieppo, S. Saarakkala, J. Töyräs, and I. O. Afara. Near infrared spectroscopy enables differentiation of mechanically and enzymatically induced cartilage injuries. Ann. Biomed. Eng. 48(9):2343–2353, 2020. https://doi.org/10.1007/s10439-020-02506-z.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ogilvie-Harris, D., and D. Fitsialos. Arthroscopic management of the degenerative knee. Arthroscopy 7(2):151–157, 1991. https://doi.org/10.1016/0749-8063(91)90101-3.

    Article  CAS  PubMed  Google Scholar 

  97. O’Malley, M. J., and C. R. Chu. Arthroscopic optical coherence tomography in diagnosis of early arthritis. Minim. Invasive Surg. 2011. https://doi.org/10.1155/2011/671308.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ong, Z. C., Y. Seet, S. Y. Khoo, and S. Noroozi. Development of an economic wireless human motion analysis device for quantitative assessment of human body joint. Measurement 115:306–315, 2018. https://doi.org/10.1016/j.measurement.2017.10.056.

    Article  Google Scholar 

  99. Oo, W. M., and M. T. Bo. Role of ultrasonography in knee osteoarthritis. J. Clin. Rheumatol. 22(6):324–329, 2016. https://doi.org/10.1097/RHU.0000000000000436.

    Article  PubMed  Google Scholar 

  100. Østergaard, M., M. Court-Payen, P. Gideon, S. Wieslander, M. Cortsen, I. Lorenzen, and O. Henriksen. Ultrasonography in arthritis of the knee: a comparison with MR imaging. Acta Radiol. 36(1):19–26, 1995. https://doi.org/10.1177/028418519503600104.

    Article  PubMed  Google Scholar 

  101. Park, S., S. Ahn, J. Sun, D. Bhatia, D. Choi, K. S. Yang, J. Bae, and J. J. Park. Highly bendable and rotational textile structure with prestrained conductive sewing pattern for human joint monitoring. Adv. Funct. Mater. 29(10):1808369, 2019. https://doi.org/10.1002/adfm.201808369.

    Article  CAS  Google Scholar 

  102. Patsadu, O., C. Nukoolkit, and B. Watanapa. Human gesture recognition using Kinect camera. In: 2012 Ninth International Conference on Computer Science and Software Engineering (JCSSE). IEEE, 2012, pp. 28–32. https://doi.org/10.1109/JCSSE.2012.6261920.

  103. Paul, M. A novel wireless health orthopedic system integrating motion and acoustic emission monitoring. Ph.D. Thesis, UCLA, 2013.

  104. Peylan, A. Direct auscultation of the joints; preliminary clinical observations. Rheumatism 9(4):77–81, 1953.

    CAS  PubMed  Google Scholar 

  105. Prior, J., B. Mascaro, L. Shark, J. Stockdale, J. Selfe, R. Bury, P. Cole, and J. Goodacre. Analysis of high frequency acoustic emission signals as a new approach for assessing knee osteoarthritis. Ann. Rheum. Dis. 69(5):929–930, 2010. https://doi.org/10.1136/ard.2009.112599.

    Article  CAS  PubMed  Google Scholar 

  106. Rajalakshmi, G., C. Vinothkumar, A. A. F. Joe, and T. T. M. Delsy. Vibroarthrographic signal analysis of bone disorders using Arduino and piezoelectric sensors. In: 2019 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2019, pp. 0082–0086. https://doi.org/10.1109/ICCSP.2019.8698064.

  107. Rangayyan, R. M., S. Krishnan, G. D. Bell, C. B. Frank, and K. O. Ladly. Parametric representation and screening of knee joint vibroarthrographic signals. IEEE Trans. Biomed. Eng. 44(11):1068–1074, 1997. https://doi.org/10.1109/10.641334.

    Article  CAS  PubMed  Google Scholar 

  108. Rangayyan, R. M., and Y. Wu. Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions. Ann. Biomed. Eng. 37(1):156–163, 2009. https://doi.org/10.1007/s10439-008-9601-1.

    Article  PubMed  Google Scholar 

  109. Rantala, J., J. Hännikäinen, and J. Vanhala. Fiber optic sensors for wearable applications. Pers. Ubiquitous Comput. 15(1):85–96, 2011. https://doi.org/10.1007/s00779-010-0303-y.

    Article  Google Scholar 

  110. Rashidifard, C., C. Vercollone, S. Martin, B. Liu, and M. E. Brezinski. The application of optical coherence tomography in musculoskeletal disease. Arthritis 2013. https://doi.org/10.1155/2013/563268.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Reddy, N. P., B. M. Rothschild, M. Mandal, V. Gupta, and S. Suryanarayanan. Noninvasive acceleration measurements to characterize knee arthritis and chondromalacia. Ann. Biomed. Eng. 23(1):78–84, 1995. https://doi.org/10.1007/BF02368303.

    Article  CAS  PubMed  Google Scholar 

  112. Responte, D. J., R. M. Natoli, and K. A. Athanasiou. Collagens of articular cartilage: structure, function, and importance in tissue engineering. Crit. Rev. Biomed. Eng. 2007. https://doi.org/10.1615/CritRevBiomedEng.v35.i5.20.

    Article  PubMed  Google Scholar 

  113. Safaei, M., N. B. Bolus, A. Erturk, and O. T. Inan. Vibration characterization of the human knee joint in audible frequencies. Sensors 20(15):4138, 2020. https://doi.org/10.3390/s20154138.

    Article  PubMed Central  Google Scholar 

  114. Salehi, S., G. Bleser, A. Reiss, and D. Stricker. Body-IMU autocalibration for inertial hip and knee joint tracking. In: Proceedings of the 10th EAI International Conference on Body Area Networks, 2015, pp. 51–57. https://doi.org/10.4108/eai.28-9-2015.2261522.

  115. Scherpereel, K. L., N. B. Bolus, H. K. Jeong, O. T. Inan, and A. J. Young. Estimating knee joint load using acoustic emissions during ambulation. Ann. Biomed. Eng. 49(3):1000–1011, 2021. https://doi.org/10.1007/s10439-020-02641-7.

    Article  PubMed  Google Scholar 

  116. Seel, T., and T. Schauer. IMU-based joint angle measurement made practical. In: Proceedings of the 4th European Conference on Technically Assisted Rehabilitation, 2013.

  117. Shark, L. K., H. Chen, and J. Goodacre. Knee acoustic emission: a potential biomarker for quantitative assessment of joint ageing and degeneration. Med. Eng. Phys. 33(5):534–545, 2011. https://doi.org/10.1016/j.medengphy.2010.12.009.

    Article  CAS  PubMed  Google Scholar 

  118. Shekarforoush, M., P. Vakiel, M. Scott, G. Muench, D. A. Hart, and N. G. Shrive. Relative surface velocity of the tibiofemoral joint and its relation to the development of osteoarthritis after joint injury. Ann. Biomed. Eng. 48(2):695–708, 2020. https://doi.org/10.1007/s10439-019-02392-0.

    Article  PubMed  Google Scholar 

  119. Shen, Y., R. Rangayyan, G. Bell, C. Frank, Y. Zhang, and K. Ladly. Localization of knee joint cartilage pathology by multichannel vibroarthrography. Med. Eng. Phys. 17(8):583–594, 1995. https://doi.org/10.1016/1350-4533(95)00013-D.

    Article  CAS  PubMed  Google Scholar 

  120. Sim, S., I. Hadjab, M. Garon, E. Quenneville, P. Lavigne, and M. D. Buschmann. Development of an electromechanical grade to assess human knee articular cartilage quality. Ann. Biomed. Eng. 45(10):2410–2421, 2017. https://doi.org/10.1007/s10439-017-1879-4.

    Article  PubMed  Google Scholar 

  121. Sophia Fox, A. J., A. Bedi, and S. A. Rodeo. The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6):461–468, 2009. https://doi.org/10.1177/1941738109350438.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sowers, M., C. Hayes, D. Jamadar, D. Capul, L. Lachance, M. Jannausch, and G. Welch. Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthr. Cartil. 11(6):387–393, 2003. https://doi.org/10.1016/S1063-4584(03)00080-3.

    Article  CAS  Google Scholar 

  123. Steindler, A. Auscultation of joints. J. Bone Jt Surg. 19(1):121–136, 1937.

    Google Scholar 

  124. Stupar, D. Z., J. S. Bajic, L. M. Manojlovic, M. P. Slankamenac, A. V. Joza, and M. B. Zivanov. Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor. IEEE Sens. J. 12(12):3424–3431, 2012. https://doi.org/10.1109/JSEN.2012.2212883.

    Article  Google Scholar 

  125. Tanaka, E., Y. Liu, L. Xia, N. Ogasawara, T. Sakamaki, F. Kano, N. Hashimoto, X. Feng, and A. Yamamoto. Effectiveness of low-intensity pulsed ultrasound on osteoarthritis of the temporomandibular joint: a review. Ann. Biomed. Eng. 48(8):2158–2170, 2020. https://doi.org/10.1007/s10439-020-02540-x.

    Article  PubMed  Google Scholar 

  126. Tanaka, N., and M. Hoshiyama. Vibroarthrography in patients with knee arthropathy. J. Back Musculoskelet. Rehabil. 25(2):117–122, 2012. https://doi.org/10.3233/BMR-2012-0319.

    Article  PubMed  Google Scholar 

  127. Tavathia, S., R. M. Rangayyan, C. B. Frank, G .D. Bell, K. O. Ladly, and Y. T. Zhang. Analysis of knee vibration signals using linear prediction. IEEE Trans. Biomed. Eng. 39(9):959–970, 1992. https://doi.org/10.1109/10.256430.

    Article  CAS  PubMed  Google Scholar 

  128. Teague, C., S. Hersek, H. Töreyin, M. L. Millard-Stafford, M. L. Jones, G. F. Kogler, M. N. Sawka, and O. T. Inan. Novel approaches to measure acoustic emissions as biomarkers for joint health assessment. In: 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN). IEEE, 2015, pp. 1–6. https://doi.org/10.1109/BSN.2015.7299389.

  129. Teague, C. N., S. Hersek, J. L. Conant, S. M. Gilliland, and O. T. Inan. Wearable knee health rehabilitation assessment using acoustical emissions. AIP Conf. Proc. 1806:070008, 2017. https://doi.org/10.1063/1.4974623.

    Article  Google Scholar 

  130. Teague, C. N., S. Hersek, H. Töreyin, M. L. Millard-Stafford, M. L. Jones, G. F. Kogler, M. N. Sawka, and O. T. Inan. Novel methods for sensing acoustical emissions from the knee for wearable joint health assessment. IEEE Trans. Biomed. Eng. 63(8):1581–1590, 2016. https://doi.org/10.1109/TBME.2016.2543226.

    Article  PubMed  Google Scholar 

  131. Teichtahl, A., A. E. Wluka, M. L. Davies-Tuck, and F. M. Cicuttini. Imaging of knee osteoarthritis. Best Pract. Res. Clin. Rheumatol. 22(6):1061–1074, 2008. https://doi.org/10.1016/j.berh.2008.09.004.

    Article  CAS  PubMed  Google Scholar 

  132. Thomeer, L., S. Guan, H. Gray, A. Schache, R. de Steiger, and M. Pandy. Six-degree-of-freedom tibiofemoral and patellofemoral joint motion during activities of daily living. Ann. Biomed. Eng. 49(4):1183–1198, 2021. https://doi.org/10.1007/s10439-020-02646-2.

    Article  PubMed  Google Scholar 

  133. Thomeer, L. T., Y. C. Lin, and M. G. Pandy. Load distribution at the patellofemoral joint during walking. Ann. Biomed. Eng. 48(12):2821–2835, 2020. https://doi.org/10.1007/s10439-020-02672-0.

    Article  PubMed  Google Scholar 

  134. Tognetti, A., F. Lorussi, N. Carbonaro, and D. De Rossi. Wearable goniometer and accelerometer sensory fusion for knee joint angle measurement in daily life. Sensors 15(11):28435–28455, 2015. https://doi.org/10.3390/s151128435.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Töreyin, H., H. K. Jeong, S. Hersek, C. N. Teague, and O. T. Inan. Quantifying the consistency of wearable knee acoustical emission measurements during complex motions. IEEE J. Biomed. Health Inform. 20(5):1265–1272, 2016. https://doi.org/10.1109/JBHI.2016.2579610.

    Article  PubMed  Google Scholar 

  136. Totaro, M., T. Poliero, A. Mondini, C. Lucarotti, G. Cairoli, J. Ortiz, and L. Beccai. Soft smart garments for lower limb joint position analysis. Sensors 17(10):2314, 2017. https://doi.org/10.3390/s17102314.

    Article  PubMed Central  Google Scholar 

  137. Vakiel, P., M. Shekarforoush, C. R. Dennison, M. Scott, C. B. Frank, D. A. Hart, and N. G. Shrive. Stress measurements on the articular cartilage surface using fiber optic technology and in-vivo gait kinematics. Ann. Biomed. Eng. 48(12):2836–2845, 2020. https://doi.org/10.1007/s10439-020-02516-x.

    Article  PubMed  Google Scholar 

  138. Vargas-Valencia, L. S., A. Elias, E. Rocon, T. Bastos-Filho, and A. Frizera. An IMU-to-body alignment method applied to human gait analysis. Sensors 16(12):2090, 2016. https://doi.org/10.3390/s16122090.

    Article  PubMed Central  Google Scholar 

  139. Wang, Z., G. Liu, and G. Tian. Human skeleton tracking using information weighted consensus filter in distributed camera networks. In: 2017 Chinese Automation Congress (CAC). IEEE, 2017, pp. 4640–4644. https://doi.org/10.1109/CAC.2017.8243598.

  140. Whittingslow, D. C., H. K. Jeong, V. G. Ganti, N. J. Kirkpatrick, G. F. Kogler, and O. T. Inan. Acoustic emissions as a non-invasive biomarker of the structural health of the knee. Ann. Biomed. Eng. 48(1):225–235, 2020. https://doi.org/10.1007/s10439-019-02333-x.

    Article  PubMed  Google Scholar 

  141. Wise, C. H. Orthopaedic Manual Physical Therapy from Art to Evidence. Philadelphia: F.A. Davis Company, 2015.

    Google Scholar 

  142. Wu, Y., S. Cai, S. Yang, F. Zheng, and N. Xiang. Classification of knee joint vibration signals using bivariate feature distribution estimation and maximal posterior probability decision criterion. Entropy 15(4):1375–1387, 2013. https://doi.org/10.3390/e15041375.

    Article  Google Scholar 

  143. Wu, Y., and S. Krishnan. Combining least-squares support vector machines for classification of biomedical signals: a case study with knee-joint vibroarthrographic signals. J. Exp. Theor. Artif. Intell. 23(1):63–77, 2011. https://doi.org/10.1080/0952813X.2010.506288.

    Article  Google Scholar 

  144. Wu, Y., S. Krishnan, and R. M. Rangayyan. Computer-aided diagnosis of knee-joint disorders via vibroarthrographic signal analysis: a review. Crit. Rev. Biomed. Eng. 2010. https://doi.org/10.1615/CritRevBiomedEng.v38.i2.60.

    Article  PubMed  Google Scholar 

  145. Wu, Y., S. Yang, F. Zheng, S. Cai, M. Lu, and M. Wu. Removal of artifacts in knee joint vibroarthrographic signals using ensemble empirical mode decomposition and detrended fluctuation analysis. Physiol. Meas. 35(3):429, 2014. https://doi.org/10.1088/0967-3334/35/3/429.

    Article  CAS  PubMed  Google Scholar 

  146. Zhang, L., J. Hu, and K. A. Athanasiou. The role of tissue engineering in articular cartilage repair and regeneration. Crit. Rev. Biomed. Eng. 2009. https://doi.org/10.1615/CritRevBiomedEng.v37.i1-2.10.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zhang, Y., and R. Rangayyan. Adaptive cancellation of muscle contraction interference in vibroarthrographic signals. IEEE Trans. Biomed. Eng. 41(2):181–191, 1994. https://doi.org/10.1109/10.284929.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by North East Centre for Biological Sciences and Healthcare Engineering (NECBH, Grant Number BT/COE/34/SP28408/2018), DST grant number TDP/BDTD/03/2021(G) for Development and testing of wearbale device for the early detection of a cartilage damage in an knee steeping towards an osteoarthritis condition using acoustic emission and New Generation Innovation and Entrepreneurship Development Centre (NewGen IEDC), Department of Science and Technology (DST), Government of India.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhirendra Kumar Verma.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, D.K., Kumari, P. & Kanagaraj, S. Engineering Aspects of Incidence, Prevalence, and Management of Osteoarthritis: A Review. Ann Biomed Eng 50, 237–252 (2022). https://doi.org/10.1007/s10439-022-02913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02913-4

Keywords

Navigation