Skip to main content

Advertisement

Log in

3D Geometric Shape Reconstruction for Revision TKA and UKA Knees Using Gaussian Process Regression

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Revision knee surgery is complicated by distortion of previous components and removal of additional bone, potentially causing misalignment and inappropriate selection of implants. In this study, we reconstructed the native femoral and tibial surface shapes in simulated total/unicompartmental knee arthroplasty (TKA/UKA) for 20 femurs and 20 tibias using a statistical inference method based on Gaussian Process regression. Compared to the true geometry, the average absolute errors (mean absolute distances) in the prediction of resected femur bones in TKA, medial UKA, and lateral UKA were 1.0 ± 0.3 mm, 1.0 ± 0.3 mm, and 0.8 ± 0.2 mm, respectively, while those in the prediction of tibia resections in the corresponding surgeries were 1.0 ± 0.4 mm, 0.8 ± 0.2 mm, and 0.7 ± 0.2 mm, respectively. Furthermore, it was found that the prediction accuracy depends on the size and gender of the resected bone. For example, the prediction accuracy for UKA cuts was significantly better than that for TKA cuts (p < 0.05). The female and male cuts were often overfit and underfit, respectively. The data indicated that this reconstruction approach can be a viable option for planning of revision surgeries, especially when contralateral anatomy is pathological or cannot be available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Albrecht, T., M. Lüthi, T. Gerig, and T. Vetter. Posterior shape models. Med. Image Anal. 17:959–973, 2013.

    Article  Google Scholar 

  2. Asano, T., M. Akagi, K. Tanaka, J. Tamura, and T. Nakamura. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin. Orthop. Relat. Res. 388:157–166, 2001. https://doi.org/10.1097/00003086-200107000-00023.

    Article  Google Scholar 

  3. Audenaert, E. A., J. Van Houcke, D. F. Almeida, L. Paelinck, M. Peiffer, G. Steenackers, and D. Vandermeulen. Cascaded statistical shape model based segmentation of the full lower limb in CT. Comput. Methods Biomech. Biomed. Engin. 22:644–657, 2019.

    Article  Google Scholar 

  4. Baldwin, M. A., J. E. Langenderfer, P. J. Rullkoetter, and P. J. Laz. Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach. Comput. Methods Programs Biomed. 97:232–240, 2010.

    Article  Google Scholar 

  5. Berger, R. A., H. E. Rubash, M. J. Seel, W. H. Thompson, and L. S. Crossett. Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin. Orthop. Relat. Res. 40:47, 1993. https://doi.org/10.1097/00003086-199301000-00008.

    Article  Google Scholar 

  6. Bhandari, M., J. Smith, L. E. Miller, and J. E. Block. Clinical and economic burden of revision knee arthroplasty. Clin. Med. Insights Arthritis Musculoskelet. Disord. 5:CMAMDS0859, 2012.

    Article  Google Scholar 

  7. Biomet Orthopedics. Vanguard XP Total Knee System Design Rationale. 2014.at https://qa-www.zimmerbiomet.com/content/dam/zimmer-biomet/medical-professionals/knee/vanguard-xp-total-knee-system/vanguard-xp-design-rationale.pdf

  8. Caprara, S., F. Carrillo, J. G. Snedeker, M. Farshad, and M. Senteler. Automated pipeline to generate anatomically accurate patient-specific biomechanical models of healthy and pathological FSUs. Front. Bioeng. Biotechnol. 9:1–15, 2021.

    Article  Google Scholar 

  9. Chui, C. S., K. S. Leung, J. Qin, D. Shi, P. Augat, R. M. Y. Wong, S. K. H. Chow, X. Y. Huang, C. Y. Chen, Y. X. Lai, P. S. H. Yung, L. Qin, and W. H. Cheung. Population-based and personalized design of total knee replacement prosthesis for additive manufacturing based on Chinese anthropometric data. Engineering. 7:386–394, 2021.

    Article  Google Scholar 

  10. Cootes, T., E. Baldock, and J. Graham. An introduction to active shape models. Image Process. Anal. 223–248, 2000.at http://person.hst.aau.dk/lasse/teaching/IACV/doc/asm_overview.pdf

  11. Defrate, L. E., H. Sun, T. J. Gill, H. E. Rubash, and G. Li. In vivo tibiofemoral contact analysis using 3D MRI-based knee models. J. Biomech. 37:1499–1504, 2004.

    Article  Google Scholar 

  12. Feng, Y., T. Y. Tsai, J. S. Li, S. Wang, H. Hu, C. Zhang, H. E. Rubash, and G. Li. Motion of the femoral condyles in flexion and extension during a continuous lunge. J. Orthop. Res. 33:591–597, 2015.

    Article  Google Scholar 

  13. Fliss, B., M. Luethi, P. Fuernstahl, A. M. Christensen, K. Sibold, M. Thali, and L. C. Ebert. CT-based sex estimation on human femora using statistical shape modeling. Am. J. Phys. Anthropol. 169:279–286, 2019.

    Article  Google Scholar 

  14. Iwaki, H., V. Pinskerova, and M. A. R. Freeman. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J. Bone Joint Surg. Br. 82-B:1189–1195, 2000.

    Article  Google Scholar 

  15. Joliffe, I., and B. Morgan. Principal component analysis and exploratory factor analysis. Stat. Methods Med. Res. 1:69–95, 1992.

    Article  CAS  Google Scholar 

  16. Lamplot, J. D., A. Bansal, J. T. Nguyen, and R. H. Brophy. Risk of subsequent joint arthroplasty in contralateral or different joint after index shoulder, hip, or knee arthroplasty. J. Bone Jt. Surg. 100:1750–1756, 2018.

    Article  Google Scholar 

  17. Li, P., T. Y. Tsai, J. S. Li, S. Wang, Y. Zhang, Y. M. Kwon, H. E. Rubash, and G. Li. Gender analysis of the anterior femoral condyle geometry of the knee. Knee. 21:529–533, 2014.

    Article  Google Scholar 

  18. Li, P., T. Y. Tsai, J. S. Li, Y. Zhang, Y. M. Kwon, H. E. Rubash, and G. Li. Morphological measurement of the knee: Race and sex effects. Acta Orthop. Belg. 80:260–268, 2014.

    PubMed  Google Scholar 

  19. Lombardi, A. V., T. H. Mallory, R. A. Waterman, and R. W. Eberle. Intercondylar distal femoral fracture. An unreported complication of posterior-stabilized total knee arthroplasty. J. Arthroplasty. 10:643–50, 1995.

    Article  Google Scholar 

  20. Luthi, M., T. Gerig, C. Jud, and T. Vetter. Gaussian process morphable models. IEEE Trans. Pattern Anal. Mach. Intell. 40:1860–1873, 2018.

    Article  Google Scholar 

  21. Maderbacher, G., A. Keshmiri, F. Zeman, J. Grifka, and C. Baier. Assessing joint line positions by means of the contralateral knee: A new approach for planning knee revision surgery? Knee Surg. Port. Traumatol. Arthrosc. 23:3244–3250, 2015.

    Article  Google Scholar 

  22. McMahon, M., and J. A. Block. The risk of contralateral total knee arthroplasty after knee replacement for osteoarthritis. J. Rheumatol. 30:1822–1824, 2003.

    PubMed  Google Scholar 

  23. Nolte, D., C. K. Tsang, K. Y. Zhang, Z. Ding, A. E. Kedgley, and A. M. J. Bull. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models. J. Biomech. 49:3576–3581, 2016.

    Article  Google Scholar 

  24. Parcells, B. Tka Bone Cuts. In: Hip and Knee Book. 2017.at https://hipandkneebook.com/tja-publication-blog/2017/3/14/tka-bone-cuts

  25. Pinskerova, V., P. Johal, S. Nakagawa, A. Sosna, A. Williams, W. Gedroyc, and M. A. R. Freeman. Does the femur roll-back with flexion? J. Bone Joint Surg. Br. 86:925–931, 2004.

    Article  CAS  Google Scholar 

  26. Poltaretskyi, S., J. Chaoui, M. Mayya, C. Hamitouche, M. J. Bercik, P. Boileau, and G. Walch. Prediction of the pre-morbid 3D anatomy of the proximal humerus based on statistical shape modelling. Bone Jt. J. 99B:927–933, 2017.

    Article  Google Scholar 

  27. Rao, C., C. K. Fitzpatrick, P. J. Rullkoetter, L. P. Maletsky, R. H. Kim, and P. J. Laz. A statistical finite element model of the knee accounting for shape and alignment variability. Med. Eng. Phys. 35:1450–1456, 2013.

    Article  Google Scholar 

  28. Rao, Z., C. Zhou, Q. Zhang, W. A. Kernkamp, J. Wang, L. Cheng, T. E. Foster, H. S. Bedair, and G. Li. There are isoheight points that measure constant femoral condyle heights along the knee flexion path. Knee Surg. Sport. Traumatol. Arthrosc. 29:600–607, 2021.

    Article  Google Scholar 

  29. Rasmussen, C. E., and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.at www.GaussianProcess.org/gpml

  30. Ritter, M. A., K. D. Carr, E. M. Keating, and P. M. Faris. Long-term outcomes of contralateral knees after unilateral total knee arthroplasty for osteoarthritis. J. Arthroplasty. 9:347–349, 1994.

    Article  CAS  Google Scholar 

  31. Salhi, A., V. Burdin, A. Boutillon, S. Brochard, T. Mutsvangwa, and B. Borotikar. Statistical shape modeling approach to predict missing scapular bone. Ann. Biomed. Eng. 48:367–379, 2020.

    Article  Google Scholar 

  32. Sanders, T. L., H. MaraditKremers, C. D. Schleck, D. R. Larson, and D. J. Berry. Subsequent total joint arthroplasty after primary total knee or hip arthroplasty. J Bone Jt Surg. 99:396–401, 2017.

    Article  Google Scholar 

  33. Sato, T., and T. Mochizuki. Three-dimensional morphology of the distal femur based on surgical epicondylar axis in the normal elderly population. Knee. 30:125–133, 2021.

    Article  Google Scholar 

  34. Scalismo Tutorials Version: 0.90. Tutorial 10: Iterative Closest Points for rigid alignmentat https://scalismo.org/docs/tutorials/tutorial10

  35. Scalismo Tutorials Version: 0.90. Tutorial 11: Model fitting with Iterative Closest Pointsat https://scalismo.org/docs/tutorials/tutorial11/

  36. Smith & Nephew. Smith & Nephew Journey II XR Bi-Cruciate Retaning Knee System Design Rationale. 2017.at https://www.smith-nephew.com/global/assets/pdf/products/surgical/orthopaedics/journeyiixrdesignrationale06791v11017.pdf

  37. Smoger, L. M., C. K. Fitzpatrick, C. W. Clary, A. J. Cyr, L. P. Maletsky, P. J. Rullkoetter, and P. J. Laz. Statistical modeling to characterize relationships between knee anatomy and kinematics. J. Orthop. Res. 33:1620–1630, 2015.

    Article  Google Scholar 

  38. Stegmann, M. B. B., and D. D. D. Gomez. A brief introduction to statistical shape analysis. Informatics Math. … 1–15, 2002.at http://graphics.stanford.edu/courses/cs164-09-spring/Handouts/paper_shape_spaces_imm403.pdf

  39. Thienpont, E. Revision knee surgery techniques. EFORT Open Rev. 1:233–238, 2016.

    Article  Google Scholar 

  40. Varadarajan, K. M., A. A. Freiberg, T. J. Gill, H. E. Rubash, and G. Li. Relationship between three-dimensional geometry of the trochlear groove and in vivo patellar tracking during weight-bearing knee flexion. J. Biomech. Eng. 132:1–7, 2010.

    Article  Google Scholar 

  41. Vlachopoulos, L., C. Dünner, T. Gass, M. Graf, O. Goksel, C. Gerber, G. Székely, and P. Fürnstahl. Computer algorithms for three-dimensional measurement of humeral anatomy: Analysis of 140 paired humeri. J. Shoulder Elb. Surg. 25:e38–e48, 2016.

    Article  Google Scholar 

  42. Vlachopoulos, L., M. Lüthi, F. Carrillo, C. Gerber, G. Székely, and P. Fürnstahl. Restoration of the patient-specific anatomy of the proximal and distal parts of the humerus. J. Bone Jt. Surg. 100:e50, 2018.

    Article  Google Scholar 

  43. Willing, R., and I. Y. Kim. Quantifying the competing relationship between durability and kinematics of total knee replacements using multiobjective design optimization and validated computational models. J. Biomech. 45:141–147, 2012.

    Article  Google Scholar 

  44. Zheng, G., S. Li, and G. Szekely. Statistical shape and deformation analysis - methods. Implement. Appl. 2017. https://doi.org/10.1016/c2015-0-06799-5.

    Article  Google Scholar 

  45. Zhu, Z., and G. Li. Construction of 3D human distal femoral surface models using a 3D statistical deformable model. J. Biomech. 44:2362–2368, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

None.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoan Li.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 44 kb)

Appendices

Appendix A: Formulations of Gaussian Process and Gaussian Process Regression

Gaussian Process

Mathematically, a Gaussian Process (GP) is used to model a vector-valued random variable, such as the 3D deformation field (\(u\)) of a shape group, which is a function of the spatial coordinates (\(x\in {\mathbb{R}}^{3}\))1:

$$u\left(x\right)={\left[{u}^{1}\left(x\right) {u}^{2}\left(x\right) {u}^{3}\left(x\right)\right]}^{T} \sim GP(\mu , k)$$
(A1)

where the subscripts (1, 2, 3) of \(u\) represent its three components for the 3D case. \(\mu (x)\in {\mathbb{R}}^{3}\) is the mean deformation, and \(k(x,x{^{\prime}})\in {\mathbb{R}}^{3\times 3}\) is the covariance function, which is also termed as the kernel.

In terms of the discrete deformation field (as the reference surface mesh, \({\Gamma }_{R}\), in nature consisting of a set of points, is the feasible region, i.e., \(x\in {\Gamma }_{R}\)), the kernel of the GP can be converted to a covariance matrix (\(\Sigma\)), when reducing the GP to a multivariate normal distribution that models scalar-valued random variables. By singular value decomposition of \(\Sigma\) (i.e., principal component analysis), eigenvalues (\({\lambda }_{i}\)) and eigenvectors (\({\varphi }_{i}\)) can be obtained, and the deformation field can be expressed as a linear combination of \(\sqrt{{\lambda }_{i}}\) and \({\varphi }_{i}(x)\)15,44:

$$u(x)=\mu (x)+{\sum }_{i=1}^{n}{\alpha }_{i}\sqrt{{\lambda }_{i}}{\varphi }_{i}(x)$$
(A2)

where \({\alpha }_{i} \sim N(\mathrm{0,1})\) are random variables which follow the standard normal distribution, and \(n\) is the number of principal components. It can be noted that Eq. A2 is the formulation of the well-known SSM.15,44 Therefore, the SSM is a special application of the GP model (Eq. A1), when the discrete deformation field was considered. In this study, the SSMs were also created with an intent to visualize shape variations, where either femur or tibia SSM included all principal components (\(n=51\), equal to the sample size minus 1).

Gaussian Process Regression

Gaussian process regression (GPR) is a Bayesian inference method designed to make predictions incorporating prior knowledge (kernels) and to provide uncertainty measures over predictions.29 Technically, GPR computes a posterior GP model, \({u}_{p} \sim GP({\mu }_{p}, {k}_{p})\), which is the conditional distribution of the prior GP model (Eq. A1), given partial observations (\(\tilde{u }\)). Considering the uncertainty of observations, we have assumed that:

$$\tilde{u }=u\left({y}_{i}\right)+\epsilon$$
(A3)

where \({y}_{i}\in {\mathbb{R}}^{3}\), \(i=1,\cdots ,m\) are the coordinates of observations. \(\epsilon \sim N(0, {\sigma }^{2}{I}_{3m\times 3m})\) is the random noise, which follows a normal distribution; where \({\sigma }^{2}\) is the variance controlling the degree of uncertainty, and \({I}_{3m\times 3m}\) represents the identity matrix with the dimension of \(3m\times 3m\).

As a merit, the posterior GP model has a closed-form (explicit) solution, and the posterior mean (\({\mu }_{p}\)) and kernel (\({k}_{p}\)) can be formulated as:

$${\mu }_{p}\left(x\right)=\mu \left(x\right)+\Sigma (x,Y){\left(\Sigma \left(Y,Y\right)+{\sigma }^{2}{I}_{3m\times 3m}\right)}^{-1}(\tilde{u }-\mu \left(Y\right))$$
(A4)
$${k}_{p}\left(x,{x}^{^{\prime}}\right)=k\left(x,{x}^{^{\prime}}\right)- \Sigma (x,Y){\left(\Sigma \left(Y,Y\right)+{\sigma }^{2}{I}_{3m\times 3m}\right)}^{-1}\Sigma (Y,x{^{\prime}})$$
(A5)

where \(Y={[{y}_{1}^{1} {y}_{1}^{2} {y}_{1}^{3} \cdots {y}_{m}^{1} {y}_{m}^{2} {y}_{m}^{3}]}^{T}\). In particular, the mean of the posterior GP model, \({\mu }_{p}\), is the solution to GPR, as it has the maximal probability of the conditional distribution. Please refer to more mathematical details of GPR in the application of shape completion, which have been documented previously.1

Appendix B: Rigid and Non-rigid Iterative Closest Point Algorithms

See Figs.

Figure B1
figure 10

The pseudo code of the rigid iterative closest point (ICP) algorithm.

B1 and

Figure B2
figure 11

The pseudo code of the non-rigid iterative closest point (ICP) algorithm.

B2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Cha, T., Peng, Y. et al. 3D Geometric Shape Reconstruction for Revision TKA and UKA Knees Using Gaussian Process Regression. Ann Biomed Eng 49, 3685–3697 (2021). https://doi.org/10.1007/s10439-021-02871-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02871-3

Keywords

Navigation