Skip to main content

Advertisement

Log in

On Structure-Function Relationships in the Female Human Urethra: A Finite Element Model Approach

  • Bioengineering for Women’s Health
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Remarkably little is known about urethral striated and smooth muscle and vascular plexus contributions to maintaining continence or initiating micturition. We therefore developed a 3-D, multiphysics, finite element model, based on sequential MR images from a 23-year-old nulliparous heathy woman, to examine the effect of contracting one or more individual muscle layers on the urethral closure pressure (UCP). The lofted urethra turned out to be both curved and asymmetric. The model results led us to reject the current hypothesis that the striated and smooth muscles contribute equally to UCP. While a simulated contraction of the outer (circular) striated muscle increased closure pressure, a similar contraction of the large inner longitudinal smooth muscle both reduced closure pressure and shortened urethral length, suggesting a role in initiating micturition. When age-related atrophy of the posterior striated muscle was simulated, a reduced and asymmetric UCP distribution developed in the transverse plane. Lastly, a simple 2D axisymmetric model of the vascular plexus and lumen suggests arteriovenous pressure plays and important role in helping to maintain luminal closure in the proximal urethra and thereby functional urethral length. More work is needed to examine interindividual differences and validate such models in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. The diameter of the widest section of the vascular plexus layer along the urethra is less than 3 mm.23 The diameter of an 8 Fr catheter is 2.67 mm (1 Fr = 0.33 mm).

References

  1. Abé, H., K. Hayashi, and M. Sato. Data Book on Mechanical Properties of Living Cells, Tissues, and Organs. Tokyo: Springer Japan, pp. 37–39, 1996.

    Book  Google Scholar 

  2. Backman, K. A. Urodynamics-the hydrodynamics of micturition in normal female subjects. Acta Neurol. Scand. 42:79–85, 2009.

    Article  Google Scholar 

  3. Brandão, S., M. Parente, E. Silva, T. DaRoza, T. Mascarenhas, J. Leitão, J. Cunha, R. NatalJorge, and R. G. Nunes. Pubovisceralis muscle fiber architecture determination: comparison between biomechanical modeling and diffusion tensor imaging. Ann. Biomed. Eng. 45:1255–1265, 2017.

    Article  Google Scholar 

  4. Brincat, C. A., J. O. L. DeLancey, and J. M. Miller. Urethral closure pressures among primiparous women with and without levator ani muscle defects. Int. Urogynecol. J. 22:1491–1495, 2011.

    Article  Google Scholar 

  5. Chaudhuri, O., J. Cooper-White, P. A. Janmey, D. J. Mooney, and V. B. Shenoy. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584:535–546, 2020.

    Article  CAS  Google Scholar 

  6. Clobes, A., J. O. L. DeLancey, and D. M. Morgan. Urethral circular smooth muscle in young and old women. Am. J. Obstet. Gynecol. 198(587):e1–e5, 2008.

    Google Scholar 

  7. DeLancey, J. O. L., D. E. Fenner, K. Guire, D. A. Patel, D. Howard, and J. M. Miller. Differences in continence system between community-dwelling black and white women with and without urinary incontinence in the EPI study. Am. J. Obstet. Gynecol. 202:584.e1–584.e12, 2010.

    Article  Google Scholar 

  8. Griffiths, D. J. The mechanics of the urethra and of micturition. Br. J. Urol. 45:497–507, 1973.

    Article  CAS  Google Scholar 

  9. Griffiths, D. The pressure within a collapsed tube, with special reference to urethral pressure. Phys. Med. Biol. 30:951–963, 1985.

    Article  CAS  Google Scholar 

  10. Griffiths, D. J., C. E. Constantinou, and R. van Mastrigt. Urinary bladder function and its control in healthy females. Am. J. Physiol. 251:R225–R230, 1986.

    CAS  PubMed  Google Scholar 

  11. Gustafson, D. R. Physics: Health and the human body. Belmont, CA: Wadsworth Publishing Company, 1980.

    Google Scholar 

  12. Hilton, P., and S. L. Stanton. Urethral pressure measurement by microtransducer: the results in symptom-free women and in those with genuine stress incontinence. BJOG An Int. J. Obstet. Gynaecol. 90:919–933, 1983.

    Article  CAS  Google Scholar 

  13. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  14. Huisman, A. B. Aspects on the anatomy of the female urethra with special relation to urinary continence. Contrib. Gynecol. Obstet. 10:1–31, 1983.

    Article  CAS  Google Scholar 

  15. Kim, K. J., J. A. Ashton-Miller, K. Strohbehn, J. O. L. DeLancey, and A. B. Schultz. The vesico-urethral pressuregram analysis of urethral function under stress. J. Biomech. 30:19–25, 1997.

    Article  CAS  Google Scholar 

  16. Kim, K. W., Y. H. Choi, S. B. Lee, Y. Baba, H.-H. Kim, and S.-H. Suh. Analysis of urine flow in three different ureter models. Comput. Math. Methods Med. 1–11:2017, 2017.

    Google Scholar 

  17. Kim, K. J. Biomechanical analyses of female stress urinary incontinence, PhD. University of Michigan, 1994.

  18. Kotchen, J. M., H. E. McKean, and T. A. Kotchen. Blood pressure trends with aging. Hypertension 4:128–134, 1982.

    Article  Google Scholar 

  19. Luikov, A. V. Analytical Heat Diffusion Theory. New York: Elsevier, 2012.

    Google Scholar 

  20. Martins, J. A. C., E. B. Pires, R. Salvado, and P. B. Dinis. A numerical model of passive and active behavior of skeletal muscles. Comput. Methods Appl. Mech. Eng. 151:419–433, 1998.

    Article  Google Scholar 

  21. Mustonen, S., and I. O. Ala-Houhala. Long-term renal dysfunction in patients with acute urinary retention. Scand. J. Urol. Nephrol. 35:44–48, 2001.

    Article  CAS  Google Scholar 

  22. Oppliger, R. A., S. A. Magnes, L. A. Popowski, and C. V. Gisolfi. Accuracy of urine specific gravity and osmolality as indicators of hydration status. Int. J. Sport Nutr. Exerc. Metab. 15:236–251, 2005.

    Article  Google Scholar 

  23. Perucchini, D., J. O. L. DeLancey, J. A. Ashton-Miller, A. Galecki, and G. N. Schaer. Age effects on urethral striated muscle. II. Anatomic location of muscle loss. Am. J. Obstet. Gynecol. 186:356–360, 2002.

    Article  Google Scholar 

  24. Prendergast, P. J., C. Lally, S. Daly, A. J. Reid, T. C. Lee, D. Quinn, and F. Dolan. Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element modelling. J. Biomech. Eng. 125:692–699, 2003.

    Article  CAS  Google Scholar 

  25. Ritter, R. C., N. R. Zinner, and A. P. Paquin. Clinical urodynamics IIX Analysis of pressure-flow relations in the normal female urethra. J. Urol. 91:161–165, 1964.

    Article  CAS  Google Scholar 

  26. Rud, T., K. E. Andersson, M. Asmussen, A. Hunting, and U. Ulmsten. Factors maintaining the intraurethral pressure in women. Invest. Urol. 17:343–347, 1980.

    CAS  PubMed  Google Scholar 

  27. Shaw, J. A., K. Dasharathi, A. S. Wineman, and M. S. Si. A simple model for myocardial changes in a failing heart. Int. J. Non. Linear. Mech. 68:132–145, 2015.

    Article  Google Scholar 

  28. Spirka, T., K. Kenton, L. Brubaker, and M. S. Damaser. Effect of material properties on predicted vesical pressure during a cough in a simplified computational model of the bladder and urethra. Ann. Biomed. Eng. 41:185–194, 2013.

    Article  Google Scholar 

  29. Strohbehn, K., L. E. Quint, M. R. Prince, K. J. Wojno, and J. O. Delancey. Magnetic resonance imaging anatomy of the female urethra: a direct histologic comparison. Obstet. Gynecol. 88:750–756, 1996.

    Article  CAS  Google Scholar 

  30. Trowbridge, E. R., J. T. Wei, D. E. Fenner, J. A. Ashton-Miller, and J. O. L. DeLancey. Effects of aging on lower urinary tract and pelvic floor function in nulliparous women. Obstet. Gynecol. 109:715–720, 2007.

    Article  Google Scholar 

  31. Putnam, D. Composition and Concentrative Administration. Security

  32. Yamada, H., and F. G. Evans. Strength of biological materials. Baltimore, MD: Williams & Wilkins Company, 1970.

    Google Scholar 

  33. Yang, J. M., S. H. Yang, and W. C. Huang. Functional correlates of Doppler flow study of the female urethral vasculature. Ultrasound Obstet. Gynecol. 28:96–102, 2006.

    Article  Google Scholar 

  34. Zhang, Y., S. Kim, A. G. Erdman, K. P. Roberts, and G. W. Timm. Feasibility of using a computer modeling approach to study SUI induced by landing a jump. Ann. Biomed. Eng. 37:1425–1433, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National Institute of Diabetes and Digestive and Kidney Diseases (1 RC2 DK122379-01) and Procter & Gamble (through a research contract).

Conflict of interest

Authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Attari.

Additional information

Associate Editor Raffaella De Vita oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attari, A., DeLancey, J.O. & Ashton-Miller, J.A. On Structure-Function Relationships in the Female Human Urethra: A Finite Element Model Approach. Ann Biomed Eng 49, 1848–1860 (2021). https://doi.org/10.1007/s10439-021-02765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02765-4

Keywords

Navigation