Skip to main content

Advertisement

Log in

Personalized Perioperative Multi-scale, Multi-physics Heart Simulation of Double Outlet Right Ventricle

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

For treatment of complex congenital heart disease, computer simulation using a three-dimensional heart model may help to improve outcomes by enabling detailed preoperative evaluations. However, no highly integrated model that accurately reproduces a patient’s pathophysiology, which is required for this simulation has been reported. We modelled a case of complex congenital heart disease, double outlet right ventricle with ventricular septal defect and atrial septal defect. From preoperative computed tomography images, finite element meshes of the heart and torso were created, and cell model of cardiac electrophysiology and sarcomere dynamics was implemented. The parameter values of the heart model were adjusted to reproduce the patient’s electrocardiogram and haemodynamics recorded preoperatively. Two options of in silico surgery were performed using this heart model, and the resulting changes in performance were examined. Preoperative and postoperative simulations showed good agreement with clinical records including haemodynamics and measured oxyhaemoglobin saturations. The use of a detailed sarcomere model also enabled comparison of energetic efficiency between the two surgical options. A novel in silico model of congenital heart disease that integrates molecular models of cardiac function successfully reproduces the observed pathophysiology. The simulation of postoperative state by in silico surgeries can help guide clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bahlmann, E., E. Gerdts, D. Cramariuc, C. Gohlke-Baerwolf, C. A. Nienaber, K. Wachtell, R. Seifert, J. B. Chambers, K. H. Kuck, and S. Ray. Prognostic value of energy loss index in asymptomatic aortic stenosis. Circulation 1247:1149–1156, 2013.

    Article  Google Scholar 

  2. Baretta, A., C. Corsini, W. Yang, I. E. Vignon-Clementel, A. L. Marsden, J. A. Feinstein, T. Y. Hsia, G. Dubini, F. Migliavacca, and G. Pennati. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philos. Trans. R. Soc. Lond. Ser. A 369:4316–4330, 2011.

    Article  CAS  Google Scholar 

  3. Corsini, C., D. Cosentino, G. Pennati, G. Dubini, T.-H. Hsia, and F. Migliavacca. Multiscale models of the hybridpalliation for hypoplastic left heart syndrome. J. Biomech. 44:767–770, 2011.

    Article  Google Scholar 

  4. Courtemanche, M., R. J. Ramirez, and S. Nattel. Ionic mechanisms underlying human atrial action potential properites: insights from a mathematical model. Am. J. Physiol. 275:H301–321, 1998.

    CAS  PubMed  Google Scholar 

  5. Escande, D., D. Loisance, C. Planche, and E. Coraboeuf. Age-related changes of action potential plateau shape in isolated human atrial fibers. Am. J. Physiol. 249:H843–850, 1985.

    CAS  PubMed  Google Scholar 

  6. Haggerty, C. M., K. R. Kanter, M. Restrepo, D. A. de Zelicourt, W. J. Parks, J. Rossignac, M. A. Fogel, and A. P. Yoganathan. Simulating hemodynamics of the Fontan Y-graft based on patient-specific in vivo connections. J. Thorac. Cardiovasc. Surg. 145:663–670, 2013.

    Article  Google Scholar 

  7. Helm P., R. Winslow and E. McVeigh. DTMRI data sets http://gforge.icm.jhu.edu/gf/project/dtmri_data_sets. Accessed 12 Jan 14, 2004.

  8. Hoffman, J. I. Congenital heart disease: incidence and inheritance. Pediatric Clin. N. Am. 37:25–43, 1990.

    Article  CAS  Google Scholar 

  9. Katayama, S., N. Umetani, T. Hisada, and S. Sugiura. Bicuspid aortic valves undergo excessive strain during its opening - a simulation study. J. Thorac. Cardiovasc. Surg. 145:1570–1576, 2013.

    Article  Google Scholar 

  10. Kerckhoffs, R. C. P., M. L. Neal, Q. Gu, J. B. Bassingthwaighte, J. H. Omens, and A. D. McCulloch. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann. Biomed. Eng. 35:1–18, 2007.

    Article  Google Scholar 

  11. Nichols, W. W., C. J. Pepine, E. A. Geiser, and R. Conti. Vascular load defined by the aortic input impedance spectrum. Fed. Proc. 39:196–201, 1980.

    CAS  PubMed  Google Scholar 

  12. O’Hara, T., L. Virag, A. Varro, and Y. Rudy. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput. Biol. 7:e1002061, 2011.

    Article  Google Scholar 

  13. Okada, J., T. Sasaki, T. Washio, H. Yamashita, T. Kariya, Y. Imai, M. Nakagawa, Y. Kadooka, R. Nagai, T. Hisada, and S. Sugiura. Patient specific simulation of body surface ECG using the finite element method. Pacing Clin. Electrophysiol. 36:309–321, 2013.

    Article  Google Scholar 

  14. Okada, J., T. Washio, A. Maehara, S. Momomura, S. Sugiura, and T. Hisada. Transmural and apicobasal gradients in repolarization contribute to T-wave genesis in human surface ECG. Am. J. Physiol. 301:H200–208, 2011.

    CAS  Google Scholar 

  15. Okada, J.-I., T. Washio, M. Nakagawa, M. Watanabe, Y. Kadooka, T. Kariya, H. Yamashita, Y. Yamada, S.-I. Momomura, R. Nagai, T. Hisada, and S. Sugiura. Multi-scale, tailor-made heart simulation can predict the effect of cardiac resynchronization therapy. J. Mol. Cell Cardiol. 108:17–23, 2017.

    Article  CAS  Google Scholar 

  16. Quail, M., and A. M. Taylor. Computer modeling to tailor therapy for congenital heart disease. Curr. Cardiol. Rep. 154:395–401, 2013.

    Article  Google Scholar 

  17. Quarteroni, A., T. Lassila, S. Rossi, and R. Ruiz-Baier. Integrated Heart—Coupling multiscale and multiphysics models for the simulation of the cardiac function. Comput. Methods Appl. Mech. Eng. 314:345–407, 2017.

    Article  Google Scholar 

  18. Riesenkampff, E., U. Rietdorf, I. Wolf, B. Schnackenburg, P. Ewert, M. Huebler, V. Alexi-Meskishvili, R. H. Anderson, N. Engel, H.-P. Meinzer, R. Hetzer, F. Berger, and T. Kuehne. The practical clinical value of three-dimensional models of complex congenitally malformed hearts. J. Thorac. Cardiovasc. Surg. 138:571–580, 2009.

    Article  Google Scholar 

  19. Sanchez-Quintana, D., R. H. Anderson, and S. Y. Ho. Ventricular myoarchitecture in tetralogy of Fallot. Heart 76:280–286, 1996.

    Article  CAS  Google Scholar 

  20. Santiago, A., J. Aguado-Sierra, M. Zavala-Aké, R. Doste-Beltran, S. Gómez, R. Arís, J. C. Cajas, E. Casoni, and M. Vázquez. Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. Int. J. Numer. Methods Biomed. Eng. 34:e3140, 2018.

    Article  Google Scholar 

  21. Shin’oka, T., H. Kurosawa, Y. Imai, M. Aoki, M. Ishiyama, T. Sakamoto, S. Miyamoto, K. Hobo, and Y. Ichihara. Outcomes of definitive surgical repair for congenitally corrected transposition of the great arteries or double outlet right ventricle with discordant atrioventricular connections: Risk analyses in 189 patients. J. Thorac. Cardiovasc. Surg. 133:1318–1328, 2007.

    Article  Google Scholar 

  22. Shiraishi, I., M. Yamagishi, K. Hamaoka, M. Fukuzawa, and T. Yagihara. Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur. J. Cardio-Thorac. Surg. 37:302–306, 2010.

    Google Scholar 

  23. Tobon-Gomez, C., N. Duchateau, R. Sebastian, S. Marchesseau, O. Camara, E. Donal, M. De Craene, A. Pashaei, J. Relan, M. Steghofer, P. Lamata, H. Delingette, S. Duckett, M. Garreau, A. Hernandez, K. S. Rhode, M. Sermesant, N. Ayache, C. Leclercq, R. Razavi, N. P. Smith, and A. F. Frangi. Understanding the mechanisms amenable to CRT response: from pre-operative multimodal image data to patient-specific computational models. Med. Biol. Eng. Comput. 51:1235–1250, 2013.

    Article  CAS  Google Scholar 

  24. Washio, T., T. Hisada, H. Watanabe, and T. E. Tezduyar. A robust preconditioner for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 194:4027–4047, 2005.

    Article  Google Scholar 

  25. Washio, T., J. Okada, and T. Hisada. A parallel multilevel technique for solving the bidomain equation on a human heart with Purkinje fibers and a torso model. SIAM Rev. 52:717–743, 2010.

    Article  Google Scholar 

  26. Washio, T., J. Okada, S. Sugiura, and T. Hisada. Approximation for cooperative interactions of a spatially-detailed cardiac sarcomere model. Cell Mol. Bioeng. 5:113–126, 2011.

    Article  Google Scholar 

  27. Washio, T., J.-I. Okada, A. Takahashi, K. Yoneda, Y. Kadooka, S. Sugiura, and T. Hisada. Multiscale heart simulation with cooperative stochastic cross-bridge dynamics and cellular structures. SIAM J. Multiscale Model. Simul. 11:965–999, 2013.

    Article  Google Scholar 

  28. Washio, T., K. Yoneda, J. I. Okada, T. Kariya, S. Sugiura, and T. Hisada. Ventricular fiber optimization utilizing the branching structure. Int. J. Numer. Methods Biomed. Eng. 32:e02753, 2016.

    Article  Google Scholar 

  29. Watanabe, H., S. Sugiura, H. Kafuku, and T. Hisada. Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophys. J. 87:2074–2085, 2004.

    Article  CAS  Google Scholar 

  30. Yongxia, Q., and M. Boutjdir. Gene expression of SERCA2a and L- and T-type Ca channels during human heart devlopment. Pediatr. Res. 50:569–574, 2001.

    Article  Google Scholar 

  31. Zhang, Q., and T. Hisada. Analysis of fluid-structure interaction problem with structural buckling and large domain change by ALE finite element method. Comput Methods Appl. Mech. Eng. 190:6341–6357, 2001.

    Article  Google Scholar 

  32. Zhang, Q., and T. Hisada. Studies of the strong coupling and weak coupling methods in FSI analysis. Int. J. Numer. Methods Eng. 60:2013–2029, 2004.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Richard Lipkin, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Conflict of interest

Dr. Okada, Dr. Washio, Dr. Hisada, and Dr. Sugiura have received Grant support from Fujitsu Ltd. The remaining authors have no disclosures.

Funding

This work was supported in part by MEXT as ‘Priority Issue on Post-K-computer’ (Integrated Computational Life Science to Support Personalized and Preventive Medicine, Project ID: hp160209 and hp150260), and by the Japan Society for the Promotion of Science (JSPS) through its ‘Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiryo Sugiura.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2482 kb)

Supplementary material 2 (AVI 7095 kb)

Supplementary material 3 (AVI 7095 kb)

Supplementary material 4 (AVI 7095 kb)

Supplementary material 5 (AVI 7095 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kariya, T., Washio, T., Okada, Ji. et al. Personalized Perioperative Multi-scale, Multi-physics Heart Simulation of Double Outlet Right Ventricle. Ann Biomed Eng 48, 1740–1750 (2020). https://doi.org/10.1007/s10439-020-02488-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02488-y

Keywords

Navigation