Skip to main content
Log in

A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Neuromuscular impairment associated with cerebral palsy (CP) often leads to life-long walking deficits. Our goal was to evaluate the ability of a novel untethered wearable ankle exoskeleton to reduce the severity of gait pathology from CP. In this clinical feasibility study of five individuals with CP, we used instrumented gait analysis to quantify how powered plantar-flexor assistance affected gait mechanics following multi-visit acclimation. Compared to how each participant walked normally, walking with untethered exoskeleton assistance resulted in improved ankle plantar-flexion and knee extension; residual flexion deformity across the lower-extremity improved by a clinically significant 14.4° (p = 0.022). Powered plantar-flexor assistance increased average total positive ankle power by 44% (p = 0.037), and resulted in a 30% reduction in average negative biological ankle power (p = 0.004) and a 29% reduction in average positive hip power (p = 0.009). These findings suggest that powered ankle assistance augmented, rather than simply replaced, biological function to produce a more efficient gait pattern, which was corroborated by a 19% improvement in metabolic cost of transport (p = 0.011). This study provides evidence in support of the continued investigation of ankle assistance in mobility and rehabilitation interventions for this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Armand, S., G. Decoulon, and A. Bonnefoy-Mazure. Gait analysis in children with cerebral palsy. EFORT open Rev. 1:448–460, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bell, K. J., S. Ounpuu, P. A. DeLuca, and M. J. Romness. Natural progression of gait in children with cerebral palsy. J. Pediatr. Orthop. 22:677–682, 2002.

    PubMed  Google Scholar 

  3. Bjornson, K. F., B. Belza, D. Kartin, R. Logsdon, and J. F. McLaughlin. Ambulatory physical activity performance in youth with cerebral palsy and youth who are developing typically. Phys. Ther. 87:248–257, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boyle, C. A., S. Boulet, L. A. Schieve, R. A. Cohen, S. J. Blumberg, M. Yeargin-Allsopp, S. Visser, and M. D. Kogan. Trends in the prevalence of developmental disabilities in US children, 1997–2008. Pediatrics 127:1034–1042, 2011.

    Article  Google Scholar 

  5. Brockway, J. M. Derivation of forulae used to calculate energy expenditure in man. Hum. Nutr. Clin. Nutr. 41C:463–471, 1987.

    Google Scholar 

  6. Browning, R. C., J. R. Modica, R. Kram, and A. Goswami. The effects of adding mass to the legs on the energetics and biomechanics of walking. Med. Sci. Sports Exerc. 39:515–525, 2007.

    Article  PubMed  Google Scholar 

  7. Burdea, G. C., D. Cioi, A. Kale, W. E. Janes, S. A. Ross, and J. R. Engsberg. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy: a case study series. IEEE Trans. Neural Syst. Rehabil. Eng. 21:165–173, 2013.

    Article  PubMed  Google Scholar 

  8. Collins, S. H., M. B. Wiggin, and G. S. Sawicki. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 522:212–215, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Corry, I. S., A. P. Cosgrove, C. M. Duffy, T. C. Taylor, and H. K. Graham. Botulinum toxin A in hamstring spasticity. Gait Posture 10:206–210, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Damiano, D. L. Activity, activity, activity: Rethinking our physical therapy approach to cerebral palsy. Phys. Ther. 86:1534–1540, 2006.

    Article  PubMed  Google Scholar 

  11. Damiano, D. L., K. E. Alter, and H. Chambers. New clinical and research trends in lower extremity management for ambulatory children with cerebral palsy. Phys. Med. Rehabil. Clin. N Am. 20:469–491, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Damiano, D. L., A. S. Arnold, K. M. Steele, and S. L. Delp. Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy. Phys. Ther. 90:269–279, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Damiano, D. L., L. A. Prosser, L. A. Curatalo, and K. E. Alter. Muscle plasticity and ankle control after repetitive use of a functional electrical stimulation device for foot drop in cerebral palsy. Neurorehabil. Neural Repair 27:200–207, 2013.

    Article  PubMed  Google Scholar 

  14. De Mattos, C., K. Patrick Do, R. Pierce, J. Feng, M. Aiona, and M. Sussman. Comparison of hamstring transfer with hamstring lengthening in ambulatory children with cerebral palsy: further follow-up. J. Child. Orthop. 8:513–520, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  16. Dodd, K. J., N. F. Taylor, and D. L. Damiano. A systematic review of the effectiveness of strength-training programs for people with cerebral palsy. Arch. Phys. Med. Rehabil. 83:1157–1164, 2002.

    Article  PubMed  Google Scholar 

  17. Dreher, T., D. Vegvari, S. I. Wolf, A. Geisbüsch, S. Gantz, W. Wenz, and F. Braatz. Development of knee function after hamstring lengthening as a part of multilevel surgery in children with spastic diplegia: A long-term outcome study. J. Bone Jt. Surg. Ser. A 94:121–130, 2012.

    Article  Google Scholar 

  18. Duffell, L. D., N. Hope, and A. H. McGregor. Comparison of kinematic and kinetic parameters calculated using a cluster-based model and Vicon’s plug-in gait. Proc. Inst. Mech. Eng. Part H J Eng. Med. 228:206–210, 2014.

    Article  Google Scholar 

  19. Gagliardi, C., A. C. Turconi, E. Biffi, C. Maghini, A. Marelli, A. Cesareo, E. Diella, and D. Panzeri. Immersive virtual reality to improve walking abilities in cerebral palsy: a pilot study. Ann. Biomed. Eng. 2018. https://doi.org/10.1007/s10439-018-2039-1.

    Article  PubMed  Google Scholar 

  20. Ghasemi, A., and S. Zahediasl. Normality tests for statistical analysis: a guide for non-statisticians. Int. J. Endocrinol. Metab. 10:486–489, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Johnson, D. C., D. L. Damiano, and M. F. Abel. The evolution of gait in childhood and adolescent cerebral palsy. J. Pediatr. Orthop. 17:392–396, 1997.

    CAS  PubMed  Google Scholar 

  22. Kang, J., D. Martelli, V. Vashista, I. Martinez-Hernandez, H. Kim, and S. K. Agrawal. Robot-driven downward pelvic pull to improve crouch gait in children with cerebral palsy. Sci. Robot. 2:eaan2634, 2017.

    Article  Google Scholar 

  23. Lerner, Z. F., W. J. Board, and R. C. Browning. Pediatric obesity and walking duration increase medial tibiofemoral compartment contact forces. J. Orthop. Res. 34:97–105, 2016.

    Article  PubMed  Google Scholar 

  24. Lerner, Z. F., D. L. Damiano, and T. C. Bulea. A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy. Sci. Transl. Med. 9:1–11, 2017.

    Article  Google Scholar 

  25. Lerner, Z. F., D. L. Damiano, and T. C. Bulea. The effects of exoskeleton assisted knee extension on lower-extremity gait kinematics, kinetics, and muscle activity in children with cerebral palsy. Sci. Rep. 7:13512, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lerner, Z. F., G. M. Gasparri, M. O. Bair, J. L. Lawson, J. Luque, T. A. Harvey, and A. T. Lerner. An untethered ankle exoskeleton improves walking economy in a pilot study of individuals with cerebral palsy. IEEE Trans. Neural Syst. Rehabil. Eng. 2018. https://doi.org/10.1109/tnsre.2018.2870756.

    Article  PubMed  Google Scholar 

  27. Maltais, D., O. Bar-Or, V. Galea, and M. Pierrynowski. Use of orthoses lowers the O(2) cost of walking in children with spastic cerebral palsy. Med. Sci. Sports Exerc. 33:320–325, 2001.

    Article  CAS  PubMed  Google Scholar 

  28. McNee, A. E., A. P. Shortland, L. C. Eve, R. O. Robinson, and M. Gough. Lower limb extensor moments in children with spastic diplegic cerebral palsy. Gait Posture 20:171–176, 2004.

    Article  CAS  PubMed  Google Scholar 

  29. Mutlu, A., A. Livanelioglu, and M. K. Gunel. Reliability of Ashworth and Modified Ashworth Scales in children with spastic cerebral palsy. BMC Musculoskelet. Disord. 9:44, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Olney, S. J., H. E. MacPhail, D. M. Hedden, and W. F. Boyce. Work and power in hemiplegic cerebral palsy gait. Phys. Ther. 70:431–438, 1990.

    Article  CAS  PubMed  Google Scholar 

  31. Rethlefsen, S. A., S. Yasmeh, T. A. Wren, and R. M. Kay. Repeat hamstring lengthening for crouch gait in children with cerebral palsy. J. Pediatr. Orthop. 33:501–504, 2013.

    Article  PubMed  Google Scholar 

  32. Romkes, J., and R. Brunner. Comparison of a dynamic and a hinged ankle-foot orthosis by gait analysis in patients with hemiplegic cerebral palsy. Gait Posture 15:18–24, 2002.

    Article  PubMed  Google Scholar 

  33. Rose, J., J. G. Gamble, A. Burgos, J. Medeiros, and W. L. Haskell. Energy expenditure index of walking for normal children and for children with cerebral palsy. Dev. Med. Child Neurol. 32:333–340, 1990.

    Article  CAS  PubMed  Google Scholar 

  34. Sawicki, G. S., and D. P. Ferris. Mechanics and energetics of level walking with powered ankle exoskeletons. J. Exp. Biol. 211:1402–1413, 2008.

    Article  PubMed  Google Scholar 

  35. Steele, K. M., A. Seth, J. L. Hicks, M. S. Schwartz, and S. L. Delp. Muscle contributions to support and progression during single-limb stance in crouch gait. J. Biomech. 43:2099–2105, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Winter, D. A. Biomechanics and Motor Control of Human Movement. New York: Wiley, 1990.

    Google Scholar 

  37. Wren, T. A., S. Rethlefsen, and R. M. Kay. Prevalence of specific gait abnormalities in children with cerebral palsy: influence of cerebral palsy subtype, age, and previous surgery. J. Pediatr. Orthop. 25:79–83, 2005.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Gian Maria Gasparri, Jason Luque, and Andrea Lerner for their critical assistance with this study. This study was supported in part by NIH Grant No. 1R03HD094583-01 and Arizona Department of Health Serves Grant No. ADHS18-198864.

Conflict of Interest

Z.F.L. is a named inventor on Provisional U.S. Patent Application No. 62/644,163, “Ankle Exoskeleton System and Method for Assisted Mobility and Rehabilitation” covering the exoskeleton used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary F. Lerner.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerner, Z.F., Harvey, T.A. & Lawson, J.L. A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy. Ann Biomed Eng 47, 1345–1356 (2019). https://doi.org/10.1007/s10439-019-02237-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02237-w

Keywords

Navigation