Skip to main content

Advertisement

Log in

Fibroblast Growth Factor-2 Binding to Heparan Sulfate Proteoglycans Varies with Shear Stress in Flow-Adapted Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 2 (FGF2), an important regulator of angiogenesis, binds to endothelial cell (EC) surface FGF receptors (FGFRs) and heparan sulfate proteoglycans (HSPGs). FGF2 binding kinetics have been predominantly studied in static culture; however, the endothelium is constantly exposed to flow which may affect FGF2 binding. We therefore used experimental and computational techniques to study how EC FGF2 binding changes in flow. ECs adapted to 24 h of flow demonstrated biphasic FGF2-HSPG binding, with FGF2-HSPG complexes increasing up to 20 dynes/cm2 shear stress and then decreasing at higher shear stresses. To understand how adaptive EC surface remodeling in response to shear stress may affect FGF2 binding to FGFR and HSPG, we implemented a computational model to predict the relative effects of flow-induced surface receptor changes. We then fit the computational model to the experimental data using relationships between HSPG availability and FGF2-HSPG dissociation and flow that were developed from a basement membrane study, as well as including HSPG production. These studies suggest that FGF2 binding kinetics are altered in flow-adapted ECs due to changes in cell surface receptor quantity, availability, and binding kinetics, which may affect cell growth factor response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

FGF2:

Fibroblast growth factor 2, basic fibroblast growth factor

HSPG:

Heparan sulfate proteoglycan

FGFR:

Fibroblast growth factor receptor

EC:

Endothelial cell

References

  1. Bacabac, R. G., T. H. Smit, S. C. Cowin, et al. Dynamic shear stress in parallel-plate flow chambers. J. Biomech. 38:159–167, 2005.

    Article  PubMed  Google Scholar 

  2. Bai, X., K. J. Bame, H. Habuchi, K. Kimata, and J. D. Esko. Turnover of heparan sulfate depends on 2-O-sulfation of uronic acids. J. Biol. Chem. 272:23172–23179, 1997.

    Article  CAS  PubMed  Google Scholar 

  3. Barkefors, I. , C. K. Aidun, and E. Ulrika Egertsdotter. Effect of fluid shear stress on endocytosis of heparan sulfate and low-density lipoproteins. J. Biomed. Biotechnol. 2008. https://doi.org/10.1155/2007/65136.

    Article  PubMed Central  Google Scholar 

  4. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200:618–627, 1978.

    Article  CAS  PubMed  Google Scholar 

  5. Bikfalvi, A., S. Klein, G. Pintucci, and D. B. Rifkin. Biological roles of fibroblast growth factor-2. Endocr. Rev. 18:26–45, 1997.

    CAS  PubMed  Google Scholar 

  6. Christianson, H. C., and M. Belting. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol. 35:51–55, 2014.

    Article  CAS  PubMed  Google Scholar 

  7. Chua, C. C., N. Rahimi, K. Forsten-Williams, and M. A. Nugent. Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2. Circ. Res. 94:316–323, 2004.

    Article  CAS  PubMed  Google Scholar 

  8. Clyne, A. M., and E. R. Edelman. Vascular growth factor binding kinetics to the endothelial cell basement membrane, with a kinetics-based correction for substrate binding. Cytotechnology 60:33, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Colgan, O. C., G. Ferguson, N. T. Collins, et al. Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress. Am. J. Physiol. Heart Circ. Physiol. 292:H3190–H3197, 2007.

    Article  CAS  PubMed  Google Scholar 

  10. Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems. New York: Cambridge University Press, 2009.

    Book  Google Scholar 

  11. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davies, P. F., C. F. Dewey, Jr., S. R. Bussolari, E. J. Gordon, and M. A. Gimbrone, Jr. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J. Clin. Investig. 73:1121–1129, 1984.

    Article  CAS  PubMed  Google Scholar 

  13. DeMaio, L., Y. S. Chang, T. W. Gardner, J. M. Tarbell, and D. A. Antonetti. Shear stress regulates occludin content and phosphorylation. Am. J. Physiol. Heart Circ. Physiol. 281:H105–H113, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. DePaola, N., J. E. Phelps, L. Florez, et al. Electrical impedance of cultured endothelium under fluid flow. Ann. Biomed. Eng. 29:648–656, 2001.

    Article  CAS  PubMed  Google Scholar 

  15. Dowd, C. J., C. L. Cooney, and M. A. Nugent. Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding. J. Biol. Chem. 274:5236–5244, 1999.

    Article  CAS  PubMed  Google Scholar 

  16. Dupree, M. A., S. R. Pollack, E. M. Levine, and C. T. Laurencin. Fibroblast growth factor 2 induced proliferation in osteoblasts and bone marrow stromal cells: a whole cell model. Biophys. J. 91:3097–3112, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. East, M. A., D. I. Landis, M. A. Thompson, and B. H. Annex. Effect of single dose of intravenous heparin on plasma levels of angiogenic growth factors. Am. J. Cardiol. 91:1234–1236, 2003.

    Article  CAS  PubMed  Google Scholar 

  18. Egeberg, M., R. Kjeken, S. O. Kolset, T. Berg, and K. Prydz. Internalization and stepwise degradation of heparan sulfate proteoglycans in rat hepatocytes. Biochim. Biophys. Acta 1541:135–149, 2001.

    Article  CAS  PubMed  Google Scholar 

  19. Fannon, M., K. Forsten-Williams, C. J. Dowd, D. A. Freedman, J. Folkman, and M. A. Nugent. Binding inhibition of angiogenic factors by heparan sulfate proteoglycans in aqueous humor: potential mechanism for maintenance of an avascular environment. FASEB J. 17:902–904, 2003.

    Article  CAS  PubMed  Google Scholar 

  20. Ferrans, V. J., J. Milei, Y. Tomita, and R. A. Storino. Basement membrane thickening in cardiac myocytes and capillaries in chronic Chagas’ disease. Am. J. Cardiol. 61:1137–1140, 1988.

    Article  CAS  PubMed  Google Scholar 

  21. Figueroa, D. S., S. F. Kemeny, and A. M. Clyne. Glycated collagen impairs endothelial cell response to cyclic stretch. Cell. Mol. Bioeng. 4:220–230, 2011.

    Article  CAS  Google Scholar 

  22. Filion, R. J., and A. S. Popel. A reaction–diffusion model of basic fibroblast growth factor interactions with cell surface receptors. Ann. Biomed. Eng. 32:645–663, 2004.

    Article  PubMed  Google Scholar 

  23. Filion, R. J., and A. S. Popel. Intracoronary administration of FGF-2: a computational model of myocardial deposition and retention. Am. J. Physiol. Heart Circ. Physiol. 288:H263–H279, 2005.

    Article  CAS  PubMed  Google Scholar 

  24. Forsten, K. E., M. Fannon, and M. A. Nugent. Potential mechanisms for the regulation of growth factor binding by heparin. J. Theor. Biol. 205:215–230, 2000.

    Article  CAS  PubMed  Google Scholar 

  25. Fuki, I. V., M. E. Meyer, and K. J. Williams. Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts. Biochem. J. 351(Pt 3):607–612, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giantsos-Adams, K. M., A. J. Koo, S. Song, et al. Heparan sulfate regrowth profiles under laminar shear flow following enzymatic degradation. Cell. Mol. Bioeng. 6:160–174, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Han, Y., S. Weinbaum, J. A. Spaan, and H. Vink. Large-deformation analysis of the elastic recoil of fibre layers in a Brinkman medium with application to the endothelial glycocalyx. J. Fluid Mech. 554:217–235, 2006.

    Article  CAS  Google Scholar 

  28. Huxley, V. H., and D. A. Williams. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am. J. Physiol. Heart Circ. Physiol. 278:H1177–H1185, 2000.

    Article  CAS  PubMed  Google Scholar 

  29. Jo, H., R. O. Dull, T. M. Hollis, and J. M. Tarbell. Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am. J. Physiol. 260:H1992–H1996, 1991.

    CAS  PubMed  Google Scholar 

  30. Kang, H., L. M. Cancel, and J. M. Tarbell. Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers. Atherosclerosis 233:682–690, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khan, A. G., A. Pickl-Herk, L. Gajdzik, T. C. Marlovits, R. Fuchs, and D. Blaas. Entry of a heparan sulphate-binding HRV8 variant strictly depends on dynamin but not on clathrin, caveolin, and flotillin. Virology 412:55–67, 2011.

    Article  CAS  PubMed  Google Scholar 

  32. Laham, R. J., F. W. Sellke, E. R. Edelman, et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 100:1865–1871, 1999.

    Article  CAS  PubMed  Google Scholar 

  33. Li, J., N. W. Shworak, and M. Simons. Increased responsiveness of hypoxic endothelial cells to FGF2 is mediated by HIF-1alpha-dependent regulation of enzymes involved in synthesis of heparan sulfate FGF2-binding sites. J. Cell Sci. 115:1951–1959, 2002.

    CAS  PubMed  Google Scholar 

  34. Liliensiek, S. J., P. Nealey, and C. J. Murphy. Characterization of endothelial basement membrane nanotopography in rhesus macaque as a guide for vessel tissue engineering. Tissue Eng. A 15:2643–2651, 2009.

    Article  CAS  Google Scholar 

  35. Lin, X., E. M. Buff, N. Perrimon, and A. M. Michelson. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126:3715–3723, 1999.

    CAS  PubMed  Google Scholar 

  36. Liu, J. X., Z. P. Yan, Y. Y. Zhang, J. Wu, X. H. Liu, and Y. Zeng. Hemodynamic shear stress regulates the transcriptional expression of heparan sulfate proteoglycans in human umbilical vein endothelial cell. Cell. Mol. Biol. (Noisy-le-grand) 62:28–34, 2016.

    Google Scholar 

  37. Montesano, R., J.-D. Vassalli, A. Baird, R. Guillemin, and L. Orci. Basic fibroblast growth factor induces angiogenesis in vitro. Proc. Natl Acad. Sci. USA 83:7297–7301, 1986.

    Article  CAS  PubMed  Google Scholar 

  38. Morss, A. S., and E. R. Edelman. Glucose modulates basement membrane fibroblast growth factor-2 via alterations in endothelial cell permeability. J. Biol. Chem. 282:14635–14644, 2007.

    Article  CAS  PubMed  Google Scholar 

  39. Moscatelli, D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J. Cell. Physiol. 131:123–130, 1987.

    Article  CAS  PubMed  Google Scholar 

  40. Mulivor, A. W., and H. H. Lipowsky. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 286:H1672–H1680, 2004.

    Article  CAS  PubMed  Google Scholar 

  41. Neufeld, G., and D. Gospodarowicz. The identification and partial characterization of the fibroblast growth factor receptor of baby hamster kidney cells. J. Biol. Chem. 260:13860–13868, 1985.

    CAS  PubMed  Google Scholar 

  42. Noria, S., D. B. Cowan, A. I. Gotlieb, and B. L. Langille. Transient and steady-state effects of shear stress on endothelial cell adherens junctions. Circ. Res. 85:504–514, 1999.

    Article  CAS  PubMed  Google Scholar 

  43. Nugent, M. A., and E. R. Edelman. Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperactivity. Biochemistry 31:8876–8883, 1992.

    Article  CAS  PubMed  Google Scholar 

  44. Nugent, M. A., and R. V. Iozzo. Fibroblast growth factor-2. Int. J. Biochem. Cell Biol. 32:115–120, 2000.

    Article  CAS  PubMed  Google Scholar 

  45. Patel, N. S., K. V. Reisig, and A. M. Clyne. A computational model of fibroblast growth factor-2 binding to endothelial cells under fluid flow. Ann. Biomed. Eng. 41:154–171, 2013.

    Article  PubMed  Google Scholar 

  46. Pries, A., T. Secomb, and P. Gaehtgens. The endothelial surface layer. Pflüg. Arch. 440:653–666, 2000.

    Article  CAS  Google Scholar 

  47. Quere, M. A., C. Clergeau, and N. Fontenaille. The paralytic dyssynergies—the squint dyssynergies, and Cuppers’ syndrome (author’s transl). Klin. Mon. Augenheilkd. 167:162–178, 1975.

    CAS  Google Scholar 

  48. Reisig, K., and A. M. Clyne. Fibroblast growth factor-2 binding to the endothelial basement membrane peaks at a physiologically relevant shear stress. Matrix Biol. 29:586–593, 2010.

    Article  CAS  PubMed  Google Scholar 

  49. Safran, M., M. Eisenstein, D. Aviezer, and A. Yayon. Oligomerization reduces heparin affinity but enhances receptor binding of fibroblast growth factor 2. Biochem. J. 345:107–113, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seebach, J., G. Donnert, R. Kronstein, et al. Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype. Cardiovasc. Res. 75:596–607, 2007.

    Article  CAS  PubMed  Google Scholar 

  51. Sevim, S., S. Ozer, G. Jones, et al. Nanomechanics on FGF-2 and heparin reveal slip bond characteristics with pH dependency. ACS Biomater. Sci. Eng. 3:1000–1007, 2017.

    Article  CAS  Google Scholar 

  52. Sherwood, L. Human Physiology: From Cells to Systems (7th ed.). Boston: Cengage Learning, 2010.

    Google Scholar 

  53. Sill, H. W., Y. S. Chang, J. R. Artman, J. A. Frangos, T. M. Hollis, and J. M. Tarbell. Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am. J. Physiol. 268:H535–H543, 1995.

    Article  CAS  PubMed  Google Scholar 

  54. Silver, M. D., V. F. Huckell, and M. Lorber. Basement membranes of small cardiac vessels in patients with diabetes and myxoedema: preliminary observations. Pathology 9:213–220, 1977.

    Article  CAS  PubMed  Google Scholar 

  55. Sperinde, G. V., and M. A. Nugent. Heparan sulfate proteoglycans control intracellular processing of bFGF in vascular smooth muscle cells. Biochemistry 37:13153–13164, 1998.

    Article  CAS  PubMed  Google Scholar 

  56. Sperinde, G. V., and M. A. Nugent. Mechanisms of fibroblast growth factor 2 intracellular processing: a kinetic analysis of the role of heparan sulfate proteoglycans. Biochemistry 39:3788–3796, 2000.

    Article  CAS  PubMed  Google Scholar 

  57. Sprague, E. A., B. L. Steinbach, R. M. Nerem, and C. J. Schwartz. Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low-density lipoproteins by cultured arterial endothelium. Circulation 76:648–656, 1987.

    Article  CAS  PubMed  Google Scholar 

  58. Tarbell, J. M. Shear stress and the endothelial transport barrier. Cardiovasc. Res. 87:320–330, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Venkataraman, G., Z. Shriver, J. C. Davis, and R. Sasisekharan. Fibroblast growth factors 1 and 2 are distinct in oligomerization in the presence of heparin-like glycosaminoglycans. Proc. Natl Acad. Sci. USA 96:1892–1897, 1999.

    Article  CAS  PubMed  Google Scholar 

  60. Vlodavsky, I., J. Folkman, R. Sullivan, et al. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. Natl Acad. Sci. USA 84:2292–2296, 1987.

    Article  CAS  PubMed  Google Scholar 

  61. Yanagishita, M., and V. C. Hascall. Metabolism of proteoglycans in rat ovarian granulosa cell culture. Multiple intracellular degradative pathways and the effect of chloroquine. J. Biol. Chem. 259:10270–10283, 1984.

    CAS  PubMed  Google Scholar 

  62. Yao, Y. Three-dimensional flow-induced dynamics of the endothelial surface glycocalyx layer. Massachusetts Institute of Technology, 2007.

  63. Yayon, A., M. Klagsbrun, J. D. Esko, P. Leder, and D. M. Ornitz. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848, 1991.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, Z., C. Coomans, and G. David. Membrane heparan sulfate proteoglycan-supported FGF2-FGFR1 signaling: evidence in support of the “cooperative end structures” model. J. Biol. Chem. 276:41921–41929, 2001.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao, B., C. Zhang, K. Forsten-Williams, J. Zhang, and M. Fannon. Endothelial cell capture of heparin-binding growth factors under flow. PLoS Comput. Biol. 6:e1000971, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding was provided by the National Science Foundation Division of Chemical, Bioengineering, Environmental, and Transport Systems (Grant No. CBET-0846751).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisa Morss Clyne.

Additional information

Associate Editor Sriram Neelamegham oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, J., Patel, N., Basehore, S. et al. Fibroblast Growth Factor-2 Binding to Heparan Sulfate Proteoglycans Varies with Shear Stress in Flow-Adapted Cells. Ann Biomed Eng 47, 1078–1093 (2019). https://doi.org/10.1007/s10439-019-02202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02202-7

Keywords

Navigation