Skip to main content
Log in

Production of hydrogel microparticles in microfluidic devices: a review

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Hydrogels are biocompatible materials commonly used in biological applications, such as cell encapsulation, tissue engineering and drug delivery systems. The use of hydrogels in the form of microparticles brings, for several purposes, many advantages, since the particles have a high surface-to-volume ratio and they can be delivered inside microscale structures such as blood microvessels and tissues. Microfluidic devices are a promising approach to produce hydrogel microparticles because they enable a high precision control of the flow streams during the microfabrication process, leading to microparticles with precise size, shape, mechanical properties and cross-linking density. In this review, the focus is put on the most important features to be considered when producing hydrogel microparticles through microfluidic devices. First, the design strategies of microfluidic devices, the selection of the operating conditions and the importance of surfactants are analyzed. Then, the most important gelation mechanisms are reviewed. Afterwards, the most commonly used hydrogel materials are introduced, and their properties are referred. Finally, the different methods to control the size, shape and particle microstructure are discussed and the main challenges for the future are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

© 2015 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable—no new data generated.

Abbreviations

PEG:

Poly(ethylene glycol)

PEGDA:

Poly(ethylene glycol) diacrylate

ELPs:

Elastin-like peptides

PEO–PPO–PEO:

Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide)

PNIPAAM:

Poly(N-isopropyl acrylamide)

PEGMEA:

Poly(ethylene glycol) methyl ether acrylate

CFL:

Continuous flow lithography

PDMS:

Poly(dimethyl siloxane)

SFL:

Stop flow lithography

SFIL:

Stop flow interference lithography

SLMs:

Spatial light modulators

DEP:

Dielectrophoresis

EWOD:

Electrowetting on dielectric

CMC:

Critical micelle concentration

EDS:

Equilibrium droplet size

PVA:

Poly(vinyl alcohol)

HA:

Hyaluronic acid

Cai :

Capillary number of the phase i

μi :

Viscosity of the phase i

v i :

Velocity of the phase i

σ:

Surface tension between the two phases

Rei :

Reynolds number of the phase i

ρi :

Density of the phase i

v i :

Velocity of the phase i

D :

Diameter of the microchannel

φ:

Flow rate ratio

Qd :

Flow rate of the dispersed phase

Qc:

Flow rate of the continuous phase

λ:

Viscosity ratio

μc :

Viscosity of the dispersed phase

μc :

Viscosity of the continuous phase

Wei :

Weber number of the phase i

Cac :

Capillary number of the continuous phase

Cad :

Capillary number of the dispersed phase

References

  • Ahmadi R, de Bruijn JD (2008) Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels. J Biomed Mater Res A 86(3):824–832

    Google Scholar 

  • Akbari S, Pirbodaghi T (2013) Microfluidic encapsulation of cells in alginate particles via an improved internal gelation approach. Microfluid Nanofluid 16(4):773–777

    Google Scholar 

  • Allazetta S, Hausherr TC, Lutolf MP (2013) Microfluidic synthesis of cell-type-specific artificial extracellular matrix hydrogels. Biomacromol 14(4):1122–1131

    Google Scholar 

  • An SY, Bui MP, Nam YJ, Han KN, Li CA, Choo J, Lee EK, Katoh S, Kumada Y, Seong GH (2009) Preparation of monodisperse and size-controlled poly(ethylene glycol) hydrogel nanoparticles using liposome templates. J Colloid Interface Sci 331(1):98–103

    Google Scholar 

  • Anna SL, Mayer HC (2006) Microscale tipstreaming in a microfluidic flow focusing device. Phys Fluids 18(12):121512

    MATH  Google Scholar 

  • Aubry G, Zhan M, Lu H (2015) Hydrogel-droplet microfluidic platform for high-resolution imaging and sorting of early larval Caenorhabditis elegans. Lab Chip 15(6):1424–1431

    Google Scholar 

  • Baret JC (2012) Surfactants in droplet-based microfluidics. Lab Chip 12(3):422–433

    Google Scholar 

  • Baret JC, Kleinschmidt F, El Harrak A, Griffiths AD (2009) Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis. Langmuir 25(11):6088–6093

    Google Scholar 

  • Baroud CN, Willaime H (2004) Multiphase flows in microfluidics. C R Phys 5(5):547–555

    Google Scholar 

  • Baroud CN, Delville JP, Gallaire F, Wunenburger R (2007) Thermocapillary valve for droplet production and sorting. Phys Rev E Stat Nonlin Soft Matter Phys 75(4 Pt 2):046302

    Google Scholar 

  • Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045

    Google Scholar 

  • Benavides S, Villalobos-Carvajal R, Reyes JE (2012) Physical, mechanical and antibacterial properties of alginate film: effect of the crosslinking degree and oregano essential oil concentration. J Food Eng 110(2):232–239

    Google Scholar 

  • Benmekhbi M, Simon S, Sjöblom J (2014) Dynamic and rheological properties of span 80 at liquid-liquid interfaces. J Dispersion Sci Technol 35(6):765–776

    Google Scholar 

  • Brenker JC, Collins DJ, Van Phan H, Alan T, Neild A (2016) On-chip droplet production regimes using surface acoustic waves. Lab Chip 16(9):1675–1683

    Google Scholar 

  • Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23(12):H41-56

    Google Scholar 

  • Burdick JA, Chung C, Jia X, Randolph MA, Langer R (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromol 6(1):386–391

    Google Scholar 

  • Cai Q-W, Ju X-J, Chen C, Faraj Y, Jia Z-H, Hu J-Q, Xie R, Wang W, Liu Z, Chu L-Y (2019) Fabrication and flow characteristics of monodisperse bullet-shaped microparticles with controllable structures. Chem Eng J 370:925–937

    Google Scholar 

  • Carneiro J, Doutel E, Campos JBLM, Miranda JM (2016) PDMS droplet formation and characterization by hydrodynamic flow focusing technique in a PDMS square microchannel. J Micromech Microeng 26(10):105013

    Google Scholar 

  • Carneiro J, Campos JBLM, Miranda JM (2019) PDMS microparticles produced in PDMS microchannels under the jetting regime for optimal optical suspensions. Coll Surf Physicochem Eng Aspects 580:123737

    Google Scholar 

  • Cellesi F, Weber W, Fussenegger M, Hubbell JA, Tirelli N (2004) Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme (“tandem” gelation) for the production of beads and liquid-core capsules. Biotechnol Bioeng 88(6):740–749

    Google Scholar 

  • Cerdeira ATS, Campos J, Miranda JM, Araujo JDP (2020) Review on microbubbles and microdroplets flowing through microfluidic geometrical elements. Micromachines (Basel) 11:2

    Google Scholar 

  • Chan E-S, Lim T-K, Voo W-P, Pogaku R, Tey BT, Zhang Z (2011) Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology 9(3):228–234

    Google Scholar 

  • Chen JZ, Troian SM, Darhuber AA, Wagner S (2005) Effect of contact angle hysteresis on thermocapillary droplet actuation. J Appl Phys 97(1):014906

    Google Scholar 

  • Choi C-H, Jung J-H, Rhee YW, Kim D-P, Shim S-E, Lee C-S (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevice 9(6):855–862

    Google Scholar 

  • Choi C-H, Jung J-H, Hwang T-S, Lee C-S (2009) In situ microfluidic synthesis of monodisperse PEG microspheres. Macromol Res 17(3):163–167

    Google Scholar 

  • Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40(19):R319–R336

    Google Scholar 

  • Chuah AM, Kuroiwa T, Kobayashi I, Zhang X, Nakajima M (2009) Preparation of uniformly sized alginate microspheres using the novel combined methods of microchannel emulsification and external gelation. Colloids Surf, A 351(1):9–17

    Google Scholar 

  • Chung SE, Park W, Park H, Yu K, Park N, Kwon S (2007) Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl Phys Lett 91(4):041106

    Google Scholar 

  • Chung SE, Park W, Shin S, Lee SA, Kwon S (2008) Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater 7(7):581

    Google Scholar 

  • Chung BG, Lee KH, Khademhosseini A, Lee SH (2012) Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12(1):45–59

    Google Scholar 

  • Cubaud T, Mason TG (2008) Capillary threads and viscous droplets in square microchannels. Phys Fluids 20(5):053302

    MATH  Google Scholar 

  • Dang T-D, Kim YH, Kim HG, Kim GM (2012) Preparation of monodisperse PEG hydrogel microparticles using a microfluidic flow-focusing device. J Ind Eng Chem 18(4):1308–1313

    Google Scholar 

  • Darhuber AA, Valentino JP, Troian SM, Wagner S (2003) Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays. J Microelectromech Syst 12(6):873–879

    Google Scholar 

  • del Campo A, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J Micromech Microeng 17(6):R81

    Google Scholar 

  • Dendukuri D, Doyle PS (2009) The synthesis and assembly of polymeric microparticles using microfluidics. Adv Mater 21(41):4071–4086

    Google Scholar 

  • Dendukuri D, Gu SS, Pregibon DC, Hatton TA, Doyle PS (2007) Stop-flow lithography in a microfluidic device. Lab Chip 7(7):818–828

    Google Scholar 

  • Destgeer G, Sung HJ (2015) Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Lab Chip 15(13):2722–2738

    Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal Chem 70(23):4974–4984

    Google Scholar 

  • Dumortier G, Grossiord JL, Agnely F, Chaumeil JC (2006) A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 23(12):2709–2728

    Google Scholar 

  • Duprat C, Berthet H, Wexler JS, du Roure O, Lindner A (2015) Microfluidic in situ mechanical testing of photopolymerized gels. Lab Chip 15(1):244–252

    Google Scholar 

  • Ellis A, Jacquier JC (2009a) Manufacture and characterisation of agarose microparticles. J Food Eng 90(2):141–145

    Google Scholar 

  • Ellis A, Jacquier JC (2009b) Manufacture of food grade κ-carrageenan microspheres. J Food Eng 94(3):316–320

    Google Scholar 

  • Evans SM, Litzenberger AL, Ellenberger AE, Maneval JE, Jablonski EL, Vogel BM (2014) A microfluidic method to measure small molecule diffusion in hydrogels. Mater Sci Eng C Mater Biol Appl 35:322–334

    Google Scholar 

  • Fan X, White IM (2011) Optofluidic microsystems for chemical and biological analysis. Nat Photonics 5(10):591

    Google Scholar 

  • Farn RJ (2008) Chemistry and technology of surfactants. Wiley, Blackwell Publishing Ltd, Oxford (UK)

  • Filatov NA, Nozdriukhin DV, Bukatin AS (2017) The kinetic study of solidification PEGDA microparticles in flow-focusing microfluidic chip. J Phys: Conf Ser 917(4):042024

    Google Scholar 

  • Fischer P, Erni P (2007) Emulsion drops in external flow fields—the role of liquid interfaces. Curr Opin Colloid Interface Sci 12(4–5):196–205

    Google Scholar 

  • Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4(2):026502

    Google Scholar 

  • Gao A, Liu X, Li T, Gao X, Wang Y (2012a) Thermocapillary Actuation of Droplets on a Microfluidic Chip. J Adhes Sci Technol 26(12–17):2165–2176

    Google Scholar 

  • Gao A, Liu X, Li T, Gao X, and Wang Y (2012b) Thermocapillary actuation of droplets on a microfluidic chip. J Adhes Sci Technol ahead-of-print(ahead-of-print) 26(12–17):2165–2176

    Google Scholar 

  • Geng Y-H, Ge X-H, Zhang S-B, Zhou Y-W, Wang Z-Q, Chen J, Xu J-H (2018) Microfluidic preparation of flexible micro-grippers with precise delivery function. Lab Chip 18(13):1838–1843

    Google Scholar 

  • Geroski DH, Edelhauser HF (2000) Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci 41(5):961–964

    Google Scholar 

  • Gilbert JC, Richardson JL, Davies MC, Palin KJ, Hadgraft J (1987) The effect of solutes and polymers on the gelation properties of pluronic F-127 solutions for controlled drug delivery. J Control Release 5(2):113–118

    Google Scholar 

  • Giovagnoli S, Tsai T, DeLuca PP (2010) Formulation and release behavior of doxycycline-alginate hydrogel microparticles embedded into pluronic F127 thermogels as a potential new vehicle for doxycycline intradermal sustained delivery. AAPS PharmSciTech 11(1):212–220

    Google Scholar 

  • Gong J, Kim CJ (2008) All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8(6):898–906

    Google Scholar 

  • Grenha A, Gomes ME, Rodrigues M, Santo VE, Mano JF, Neves NM, Reis RL (2010) Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed Mater Res A 92(4):1265–1272

    Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    Google Scholar 

  • Huang J, Hastings CL, Duffy GP, Kelly HM, Raeburn J, Adams DJ, Heise A (2013) Supramolecular hydrogels with reverse thermal gelation properties from (oligo)tyrosine containing block copolymers. Biomacromol 14(1):200–206

    Google Scholar 

  • Hwang DK, Dendukuri D, Doyle PS (2008) Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip 8(10):1640–1647

    Google Scholar 

  • Ionov L (2014) Hydrogel-based actuators: possibilities and limitations. Mater Today 17(10):494–503

    Google Scholar 

  • Jagur-Grodzinski J (2009) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Poly Adv Technol 21:1 (p. n/a-n/a)

    Google Scholar 

  • Jang JH, Dendukuri D, Hatton TA, Thomas EL, Doyle PS (2007) A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography. Angew Chem Int Ed 46(47):9027–9031

    Google Scholar 

  • Jegannathan KR, Chan E-S, Ravindra P (2009) Physical and stability characteristics of Burkholderia cepacia lipase encapsulated in κ-carrageenan. J Mol Catal B Enzym 58(1):78–83

    Google Scholar 

  • Jeon SJ, Hayward RC (2017) Reconfigurable microscale frameworks from concatenated helices with controlled chirality. Adv Mater 29(17):1606111

    Google Scholar 

  • Jeong W-W, Kim C (2011) One-step method for monodisperse microbiogels by glass capillary microfluidics. Colloids Surf, A 384(1–3):268–273

    Google Scholar 

  • Jeong WC, Lim JM, Choi JH, Kim JH, Lee YJ, Kim SH, Lee G, Kim JD, Yi GR, Yang SM (2012) Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices. Lab Chip 12(8):1446–1453

    Google Scholar 

  • Jo S, Kim J, Kim SW (2006) Reverse thermal gelation of aliphatically modified biodegradable triblock copolymers. Macromol Biosci 6(11):923–928

    Google Scholar 

  • Jones TB, Gunji M, Washizu M, Feldman MJ (2001) Dielectrophoretic liquid actuation and nanodroplet formation. J Appl Phys 89(2):1441–1448

    Google Scholar 

  • Joo MK, Sohn YS, Jeong B (2007) Stereoisomeric effect on reverse thermal gelation of poly(ethylene glycol)/poly(lactide) multiblock copolymer. Macromolecules 40(14):5111–5115

    Google Scholar 

  • Kawaguchi M, Fukushima T, Hayakawa T, Nakashima N, Inoue Y, Takeda S, Okamura K, Taniguchi K (2006) Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering. Dent Mater J 25(4):719–725

    Google Scholar 

  • Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28(34):5087–5092

    Google Scholar 

  • Kimelman-Bleich N, Pelled G, Sheyn D, Kallai I, Zilberman Y, Mizrahi O, Tal Y, Tawackoli W, Gazit Z, Gazit D (2009) The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based bone formation in vivo. Biomaterials 30(27):4639–4648

    Google Scholar 

  • Kityk IV, Kasperczyk J, Sahraoui B, Yasinskii MF, Holan B (1997) Low temperature anomalies in polyvinyl alcohol photopolymers. Polymer 38(19):4803–4806

    Google Scholar 

  • Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68(1):34–45

    Google Scholar 

  • Kumachev A, Greener J, Tumarkin E, Eiser E, Zandstra PW, Kumacheva E (2011) High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials 32(6):1477–1483

    Google Scholar 

  • Kuo C, Ma P (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Struct Gelat Rate Mech Propert 22:511–521

    Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Google Scholar 

  • Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ (2000) Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 33(11):4291–4294

    Google Scholar 

  • Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554

    Google Scholar 

  • Lee W, Walker LM, Anna SL (2009) Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Phys Fluids 21(3):032103

    MATH  Google Scholar 

  • Lee KG, Park TJ, Soo SY, Wang KW, Kim BI, Park JH, Lee CS, Kim DH, Lee SJ (2010) Synthesis and utilization of E. coli-encapsulated PEG-based microdroplet using a microfluidic chip for biological application. Biotechnol Bioeng 107(4):747–751

    Google Scholar 

  • Lee KG, Park TJ, Soo SY, Wang KW, Kim BII, Park JH, Lee C-S, Kim DH, Lee SJ (2010) Synthesis and utilization of E coli-encapsulated PEG-based microdroplet using a microfluidic chip for biological application. Biotechnol Bioeng 107(4):747–751

    Google Scholar 

  • Leng X, Zhang W, Wang C, Cui L, Yang CJ (2010) Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR. Lab Chip 10(21):2841–2843

    Google Scholar 

  • Leong J-Y, Lim T-K, Pogaku R, Chan E-S (2011) Size prediction of κ-carrageenan droplets formed in co-flowing immiscible liquid. Particuology 9(6):637–643

    Google Scholar 

  • Leong J-Y, Lam W-H, Ho K-W, Voo W-P, Lee MF-X, Lim H-P, Lim S-L, Tey B-T, Poncelet D, Chan E-S (2016) Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology 24:44–60

    Google Scholar 

  • LeRoux AM, Guilak F, Setton L (1999) Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J Biomed Mater Res 47:46–53

    Google Scholar 

  • Lewis CL, Lin Y, Yang C, Manocchi AK, Yuet KP, Doyle PS, Yi H (2010) Microfluidic fabrication of hydrogel microparticles containing functionalized viral nanotemplates. Langmuir 26(16):13436–13441

    Google Scholar 

  • Li L, Ni R, Shao Y, Mao S (2014) Carrageenan and its applications in drug delivery. Carbohydr Polym 103:1–11 (Supplement C)

    Google Scholar 

  • Liao Y, Song J, Li E, Luo Y, Shen Y, Chen D, Cheng Y, Xu Z, Sugioka K, Midorikawa K (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12(4):746–749

    Google Scholar 

  • Lin H-H, Cheng Y-L (2001) In-Situ Thermoreversible Gelation of Block and Star Copolymers of Poly(ethylene glycol) and Poly(N-isopropylacrylamide) of Varying Architectures. Macromolecules 34(11):3710–3715

    Google Scholar 

  • Liu K, Ding HJ, Liu J, Chen Y, Zhao XZ (2006) Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir 22(22):9453–9457

    Google Scholar 

  • Liu Y, Geever LM, Kennedy JE, Higginbotham CL, Cahill PA, McGuinness GB (2010) Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels. J Mech Behav Biomed Mater 3(2):203–209

    Google Scholar 

  • Liu K, Deng Y, Zhang N, Li S, Ding H, Guo F, Liu W, Guo S, Zhao X-Z (2012) Generation of disk-like hydrogel beads for cell encapsulation and manipulation using a droplet-based microfluidic device. Microfluid Nanofluid 13(5):761–767

    Google Scholar 

  • Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vettiger P (1997) SU-8: a low-cost negative resist for MEMS. J Micromech Microeng 7(3):121

    Google Scholar 

  • Ma C, Lu W, Yang X, He J, Le X, Wang L, Zhang J, Serpe MJ, Huang Y, Chen T (2018) Bioinspired anisotropic hydrogel actuators with on–off switchable and color-tunable fluorescence behaviors. Adv Func Mater 28(7):1704568

    Google Scholar 

  • Magdanz V, Stoychev G, Ionov L, Sanchez S, Schmidt OG (2014) Stimuli-Responsive Microjets with Reconfigurable Shape. Angew Chem Int Ed 53(10):2673–2677

    Google Scholar 

  • Maia JM, Amorim VA, Alexandre D, Marques PV (2017) Real-time optical monitoring of etching reaction of microfluidic channel fabricated by femtosecond laser direct writing. J Lightwave Technol 35(11):2291–2298

    Google Scholar 

  • Martinez CJ, Kim JW, Ye C, Ortiz I, Rowat AC, Marquez M, Weitz D (2012) A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles. Macromol Biosci 12(7):946–951

    Google Scholar 

  • Mata A, Fleischman AJ, Roy S (2005) Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices 7(4):281–293

    Google Scholar 

  • Matthew JE, Nazario YL, Roberts SC, Bhatia SR (2002) Effect of mammalian cell culture medium on the gelation properties of Pluronic® F127. Biomaterials 23(23):4615–4619

    Google Scholar 

  • Mazutis L, Griffiths AD (2012) Selective droplet coalescence using microfluidic systems. Lab Chip 12(10):1800–1806

    Google Scholar 

  • Mazutis L, Vasiliauskas R, Weitz DA (2015) Microfluidic production of alginate hydrogel particles for antibody encapsulation and release. Macromol Biosci 15(12):1641–1646

    Google Scholar 

  • McClements DJ, Henson L, Popplewell LM, Decker EA, Choi SJ (2012) Inhibition of Ostwald ripening in model beverage emulsions by addition of poorly water soluble triglyceride oils. J Food Sci 77(1):C33–C38

    Google Scholar 

  • McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499

    Google Scholar 

  • McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21(1):27–40

    Google Scholar 

  • Merkel TJ, Jones SW, Herlihy KP, Kersey FR, Shields AR, Napier M et al (2011) Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci U S A 108(2):586–591

    Google Scholar 

  • Myers D (2005) Surfactant science and technology. In: John Wiley & Sons (eds) Inc, New Jersey

  • Nakagawa K, Taguchi M, Ema T (1990) Fabrication of 64 M DRAM with i-line phase-shift lithography. Int Tech Digest Elect Dev IEEE. https://doi.org/10.1109/IEDM.1990.237037

    Article  Google Scholar 

  • Natarajan S, Chang-Yen D, Gale B (2008) Large-area, high-aspect-ratio SU-8 molds for the fabrication of PDMS microfluidic devices. J Micromech Microeng 18(4):045021

    Google Scholar 

  • Nelson WC, Kim CJC (2012) Droplet actuation by electrowetting-on-dielectric (EWOD): a review. J Adhes Sci Technol ahead-of-print(ahead-of-print): 26(12–17):1747–1771

    Google Scholar 

  • Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314

    Google Scholar 

  • Nie S, Hsiao WL, Pan W, Yang Z (2011) Thermoreversible Pluronic F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: in vitro drug release, cell cytotoxicity, and uptake studies. Int J Nanomedicine 6:151–166

    Google Scholar 

  • Nishinari K, Watase M (1987) Effects of polyhydric alcohols on thermal and rheological properties of polysaccharide gels. Agric Biol Chem 51(12):3231–3238

    Google Scholar 

  • Normand V, Lootens DL, Amici E, Plucknett KP, Aymard P (2000) New insight into agarose gel mechanical properties. Biomacromol 1(4):730–738

    Google Scholar 

  • Oberti S, Neild A, Quach R, Dual J (2009) The use of acoustic radiation forces to position particles within fluid droplets. Ultrasonics 49(1):47–52

    Google Scholar 

  • Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33(4):448–477

    Google Scholar 

  • Oliveira MB, Mano JF (2011) Polymer-based microparticles in tissue engineering and regenerative medicine. Biotechnol Prog 27(4):897–912

    Google Scholar 

  • Palacci J, Sacanna S, Abramian A, Barral J, Hanson K, Grosberg AY, Pine DJ, Chaikin PM (2015) Artificial rheotaxis. Sci Adv 1(4):e1400214

    Google Scholar 

  • Park D, Wu W, Wang Y (2011) A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer. Biomaterials 32(3):777–786

    Google Scholar 

  • Park K-S, Kim C, Nam J-O, Kang S-M, Lee C-S (2016) Synthesis and characterization of thermosensitive gelatin hydrogel microspheres in a microfluidic system. Macromol Res 24(6):529–536

    Google Scholar 

  • Patel MA, AbouGhaly MH, Schryer-Praga JV, Chadwick K (2017) The effect of ionotropic gelation residence time on alginate cross-linking and properties. Carbohydr Polym 155:362–371

    Google Scholar 

  • Patil J, Kamalapur MV, Marapur SC, Kadam DV (2010) Ionotropic gelation and polyelectrolyte complexation: The novel techniques to design hydrogel particulate sustained, modulated drug delivery system. Rev 5(1):241–248

    Google Scholar 

  • Patil P, Chavanke D, Wagh MA (2012) A review on ionotropic gelation method: Novel approach for controlled gastroretentive gelispheres. Int J Pharm Pharm Sci 4:27–32

    Google Scholar 

  • Pensado A, Fernandez-Pineiro I, Seijo B, Sanchez A (2014) Anionic nanoparticles based on Span 80 as low-cost, simple and efficient non-viral gene-transfection systems. Int J Pharm 476(1–2):23–30

    Google Scholar 

  • Perez Bravo JJ, Francois N (2016) Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers. Carbohydr Polym 148:134–142

    Google Scholar 

  • Pethig R (2010) Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2):022811

    Google Scholar 

  • Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281(5375):389–392

    Google Scholar 

  • Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc 125(39):11802–11803

    Google Scholar 

  • Ré M-I (2006) Formulating drug delivery systems by spray drying. Drying Technol 24(4):433–446

    Google Scholar 

  • Rossow T, Heyman JA, Ehrlicher AJ, Langhoff A, Weitz DA, Haag R, Seiffert S (2012) Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics. J Am Chem Soc 134(10):4983–4989

    Google Scholar 

  • Sacanna S, Irvine WT, Chaikin PM, Pine DJ (2010) Lock and key colloids. Nature 464(7288):575

    Google Scholar 

  • Sacco P, Paoletti S, Cok M, Asaro F, Abrami M, Grassi M, Donati I (2016) Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers. Int J Biol Macromol 92:476–483

    Google Scholar 

  • Sakai S, Ito S, Inagaki H, Hirose K, Matsuyama T, Taya M, Kawakami K (2011) Cell-enclosing gelatin-based microcapsule production for tissue engineering using a microfluidic flow-focusing system. Biomicrofluidics 5(1):13402

    Google Scholar 

  • Samanipour R, Wang Z, Ahmadi A, Kim K (2015) Experimental and computational study of microfluidic flow-focusing generation of gelatin methacrylate hydrogel droplets. J Appl Poly Sci 133:29

    Google Scholar 

  • Say-Hwa T, Nam-Trung N, Levent Y, Tae Goo K (2010) Formation and manipulation of ferrofluid droplets at a microfluidic T -junction. J Micromech Microeng 20(4):045004

    Google Scholar 

  • Schanté CE, Zuber G, Herlin C, Vandamme TF (2011) Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohyd Polym 85(3):469–489

    Google Scholar 

  • Schmedlen RH, Masters KS, West JL (2002) Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23(22):4325–4332

    Google Scholar 

  • Schmid L, Franke T (2014) Acoustic modulation of droplet size in a T-junction. Appl Phys Lett 104(13):133501

    Google Scholar 

  • Schmidt H, Hawkins AR (2008) Optofluidic waveguides: I. Conc Implement Microfluid Nanofluid 4(1–2):3–16

    Google Scholar 

  • Shah V, Bharatiya B, Shah DO, Mukherjee T (2015) Correlation of dynamic surface tension with sedimentation of PTFE particles and water penetration in powders. Langmuir 31(51):13725–13733

    Google Scholar 

  • Sharma S, Srisa-Art M, Scott S, Asthana A, Cass A (2013) Droplet-Based Microfluidics. In: Jenkins G, Mansfield CD (eds) Microfluidic diagnostics: methods and protocols. Humana Press, Totowa, NJ, pp 207–230

    Google Scholar 

  • Shaw LA, Chizari S, Shusteff M, Naghsh-Nilchi H, Di Carlo D, Hopkins JB (2018) Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles. Opt Express 26(10):13543–13548

    Google Scholar 

  • Shen B, Ricouvier J, Malloggi F, Tabeling P (2016) Designing colloidal molecules with microfluidics. Adv Sci 3(6):1600012

    Google Scholar 

  • Shintaku H, Kuwabara T, Kawano S, Suzuki T, Kanno I, Kotera H (2006) Micro cell encapsulation and its hydrogel-beads production using microfluidic device. Microsyst Technol 13(8–10):951–958

    Google Scholar 

  • Shintaku H, Kuwabara T, Kawano S, Suzuki T, Kanno I, Kotera H (2007) Micro cell encapsulation and its hydrogel-beads production using microfluidic device. Microsyst Technol 13(8):951–958

    Google Scholar 

  • Stoeber B, Zhihao Y, Liepmann D, Muller SJ (2005) Flow control in microdevices using thermally responsive triblock copolymers. J Microelectromech Syst 14(2):207–213

    Google Scholar 

  • Stoeber B, Hu C-MJ, Liepmann D, Muller SJ (2006) Passive flow control in microdevices using thermally responsive polymer solutions. Phys Fluids 18(5):053103

    Google Scholar 

  • Sung Kwon C, Hyejin M, Chang-Jin K (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80

    Google Scholar 

  • Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19(18):2696–2701

    Google Scholar 

  • Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220

    Google Scholar 

  • Tetradis-Meris G, Rossetti D, Pulido de Torres CN, Cao R, Lian G, Janes R (2009) Novel parallel integration of microfluidic device network for emulsion formation. Indust Eng Chem Res 48(19):8881–8889

    Google Scholar 

  • Todd PL, Jon FE (2013) A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics. J Phys D Appl Phys 46(11):114005

    Google Scholar 

  • Tomaiuolo G (2014) Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics 8(5):051501

    Google Scholar 

  • Tostado CP, Xu J, Luo G (2011) The effects of hydrophilic surfactant concentration and flow ratio on dynamic wetting in a T-junction microfluidic device. Chem Eng J 171(3):1340–1347

    Google Scholar 

  • Tsuchiya H, Okochi M, Nagao N, Shikida M, Honda H (2008) On-chip polymerase chain reaction microdevice employing a magnetic droplet-manipulation system. Sensors Actuat Chem 130(2):583–588

    Google Scholar 

  • Tumarkin E, Kumacheva E (2009) Microfluidic generation of microgels from synthetic and natural polymers. Chem Soc Rev 38(8):2161–2168

    Google Scholar 

  • Um E, Lee D-S, Pyo H-B, Park J-K (2008) Continuous generation of hydrogel beads and encapsulation of biological materials using a microfluidic droplet-merging channel. Microfluid Nanofluid 5(4):541–549

    Google Scholar 

  • Utada A, Lorenceau E, Link D, Kaplan P, Stone HA, Weitz D (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541

    Google Scholar 

  • Wang Y, Wang Y, Zheng X, Yi G-R, Sacanna S, Pine DJ, Weck M (2014) Three-dimensional lock and key colloids. J Am Chem Soc 136(19):6866–6869

    Google Scholar 

  • Wassén S, Rondeau E, Sott K, Lorén N, Fischer P, Hermansson A-M (2012) Microfluidic production of monodisperse biopolymer particles with reproducible morphology by kinetic control. Food Hydrocolloids 28(1):20–27

    Google Scholar 

  • Wehking JD, Chew L, Kumar R (2013) Droplet deformation and manipulation in an electrified microfluidic channel. Appl Phys Lett 103(5):054101

    Google Scholar 

  • Weng L, Zhang L, Ruan D, Shi L, Xu J (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20(6):2086–2093

    Google Scholar 

  • Wijekoon A, Fountas-Davis N, Leipzig ND (2013) Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing. Acta Biomater 9(3):5653–5664

    Google Scholar 

  • Wixforth A, Strobl C, Gauer C, Toegl A, Scriba J, Guttenberg ZV (2004) Acoustic manipulation of small droplets. Anal Bioanal Chem 379(7–8):982–991

    Google Scholar 

  • Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir 24(22):12758–12765

    Google Scholar 

  • Xu JH, Li SW, Tan J, Luo GS (2008) Controllable preparation of monodispersed calcium alginate microbeads in a novel microfluidic system. Chem Eng Technol 31(8):1223–1226

    Google Scholar 

  • Xu Q, Hashimoto M, Dang TT, Hoare T, Kohane DS, Whitesides GM, Langer R, Anderson DG (2009) Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5(13):1575–1581

    Google Scholar 

  • Xu JH, Dong PF, Zhao H, Tostado CP, Luo GS (2012) The dynamic effects of surfactants on droplet formation in coaxial microfluidic devices. Langmuir 28(25):9250–9258

    Google Scholar 

  • Xue P, Wu Y, Menon NV, Kang Y (2014) Microfluidic synthesis of monodisperse PEGDA microbeads for sustained release of 5-fluorouracil. Microfluid Nanofluid 18(2):333–342

    Google Scholar 

  • Yang C-G, Xu Z-R, Wang J-H (2010) Manipulation of droplets in microfluidic systems. TrAC, Trends Anal Chem 29(2):141–157

    Google Scholar 

  • Ye B, Xu H, Bao B, Xuan J, Zhang L (2017) 3D-printed air-blast microfluidic nozzles for preparing calcium alginate microparticles. RSC Adv 7(77):48826–48834

    Google Scholar 

  • Yeh MK, Davis SS, Coombes AGA (1996) Improving protein delivery from microparticles using blends of poly(DL lactide co-glycolide) and poly(ethylene oxide)-poly(propylene oxide) copolymers. Pharm Res 13(11):1693–1698

    Google Scholar 

  • Yeh C-H, Chen K-R, Lin Y-C (2013) Developing heatable microfluidic chip to generate gelatin emulsions and microcapsules. Microfluid Nanofluid 15(6):775–784

    Google Scholar 

  • Yin N, Stilwell MD, Santos TMA, Wang H, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138

    Google Scholar 

  • Yizhong W, Yuejun Z, Sung Kwon C (2017) Efficient in-droplet separation of magnetic particles for digital microfluidics. J Micromech Microeng 17(10):2148

    Google Scholar 

  • Yousefi A, Lafleur PG, Gauvin R (1997) Kinetic studies of thermoset cure reactions: a review. Polym Compos 18(2):157–168

    Google Scholar 

  • Yu B, Cong H, Liu X, Ren Y, Wang J, Zhang L, Tang J, Ma Y, Akasaka T (2013) Preparation of monodisperse PEG hydrogel composite microspheres via microfluidic chip with rounded channels. J Micromech Microeng 23:095016

    Google Scholar 

  • Yu L, Sun Q, Hui Y, Seth A, Petrovsky N, Zhao C-X (2019) Microfluidic formation of core-shell alginate microparticles for protein encapsulation and controlled release. J Colloid Interface Sci 539:497–503

    Google Scholar 

  • Zamora-Mora V, Velasco D, Hernández R, Mijangos C, Kumacheva E (2014) Chitosan/agarose hydrogels: cooperative properties and microfluidic preparation. Carbohyd Polym 111:348–355

    Google Scholar 

  • Zamora-Mora V, Velasco D, Hernandez R, Mijangos C, Kumacheva E (2014a) Chitosan/agarose hydrogels: cooperative properties and microfluidic preparation. Carbohydr Polym 111:348–355

    Google Scholar 

  • Zhan W, Seong GH, Crooks RM (2002) Hydrogel-based microreactors as a functional component of microfluidic systems. Anal Chem 74(18):4647–4652

    Google Scholar 

  • Zhang Y, Nguyen NT (2017) Magnetic digital microfluidics: a review. Lab Chip 17(6):994–1008

    Google Scholar 

  • Zhang X, Li L, Luo C (2016) Gel integration for microfluidic applications. Lab Chip 16(10):1757–1776

    Google Scholar 

  • Zhu P, Kong T, Kang Z, Tian X, Wang L (2015) Tip-multi-breaking in capillary microfluidic devices. Sci Rep 5:11102

    Google Scholar 

  • Ziemecka I, van Steijn V, Koper GJ, Rosso M, Brizard AM, van Esch JH, Kreutzer MT (2011) Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems. Lab Chip 11(4):620–624

    Google Scholar 

Download references

Acknowledgements

This work was funded by FEDER funds through COMPETE2020—Operational Programme for Competitiveness Factors (POCI) and National Funds (PIDDAC) through FCT (Fundação para a Ciência e a Tecnologia) under project POCI-01-0145-FEDER-016861-PTDC/QEQ-FTT/4287/2014, PhD grant PD/BD/114313/2016 and Transport Phenomena Research Center—CEFT base funding UIDB/00532/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Miranda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, A., Carneiro, J., Campos, J.B.L.M. et al. Production of hydrogel microparticles in microfluidic devices: a review. Microfluid Nanofluid 25, 10 (2021). https://doi.org/10.1007/s10404-020-02413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-020-02413-8

Keywords

Navigation