Skip to main content
Log in

Evaluation of Drug-Loaded Gold Nanoparticle Cytotoxicity as a Function of Tumor Vasculature-Induced Tissue Heterogeneity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The inherent heterogeneity of tumor tissue presents a major challenge to nanoparticle-mediated drug delivery. This heterogeneity spans from the molecular (genomic, proteomic, metabolomic) to the cellular (cell types, adhesion, migration) and to the tissue (vasculature, extra-cellular matrix) scales. In particular, tumor vasculature forms abnormally, inducing proliferative, hypoxic, and necrotic tumor tissue regions. As the vasculature is the main conduit for nanotherapy transport into tumors, vasculature-induced tissue heterogeneity can cause local inadequate delivery and concentration, leading to subpar response. Further, hypoxic tissue, although viable, would be immune to the effects of cell-cycle specific drugs. In order to enable a more systematic evaluation of such effects, here we employ computational modeling to study the therapeutic response as a function of vasculature-induced tumor tissue heterogeneity. Using data with three-layered gold nanoparticles loaded with cisplatin, nanotherapy is simulated interacting with different levels of tissue heterogeneity, and the treatment response is measured in terms of tumor regression. The results quantify the influence that varying levels of tumor vascular density coupled with the drug strength have on nanoparticle uptake and washout, and the associated tissue response. The drug strength affects the proportion of proliferating, hypoxic, and necrotic tissue fractions, which in turn dynamically affect and are affected by the vascular density. Higher drug strengths may be able to achieve stronger tumor regression but only if the intra-tumoral vascular density is above a certain threshold that affords sufficient transport. This study establishes an initial step towards a more systematic methodology to assess the effect of vasculature-induced tumor tissue heterogeneity on the response to nanotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Bertrand, N., J. Wu, X. Xu, N. Kamaly, and O. C. Farokhzad. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66:2–25, 2014.

    Article  CAS  PubMed  Google Scholar 

  2. Brahimi-Horn, M. C., and J. Pouyssegur. The hypoxia-inducible factor and tumor progression along the angiogenic pathway. Int. Rev. Cytol. 242:157–213, 2005.

    Article  CAS  PubMed  Google Scholar 

  3. Chamseddine I. M., H. B. Frieboes, and M. Kokkolaras. Design optimization of tumor vasculature-bound nanoparticles. Sci. Rep., 2018

  4. Chen, H., X. Tong, L. Lang, O. Jacobson, B. C. Yung, X. Yang, R. Bai, D. O. Kiesewetter, Y. Ma, H. Wu, G. Niu, and X. Chen. Quantification of tumor vascular permeability and blood volume by positron emission tomography. Theranostics 7:2363–2376, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Curtis, L. T., C. G. England, M. Wu, J. Lowengrub, and H. B. Frieboes. An interdisciplinary computational/experimental approach to evaluate drug-loaded gold nanoparticle tumor cytotoxicity. Nanomedicine (Lond) 11:197–216, 2016.

    Article  CAS  Google Scholar 

  6. Curtis, L. T., P. Rychahou, Y. Bae, and H. B. Frieboes. A Computational/experimental assessment of antitumor activity of polymer nanoassemblies for pH-controlled drug delivery to primary and metastatic tumors. Pharm. Res. 33:2551, 2016.

    Article  CAS  Google Scholar 

  7. Curtis, L. T., V. H. van Berkel, and H. B. Frieboes. Pharmacokinetic/pharmacodynamic modeling of combination-chemotherapy for lung cancer. J. Theor. Biol. 448:38–52, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Curtis, L. T., M. Wu, J. Lowengrub, P. Decuzzi, and H. B. Frieboes. Computational modeling of tumor response to drug release from vasculature-bound nanoparticles. PLoS ONE 10:e0144888, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Decuzzi, P., R. Pasqualini, W. Arap, and M. Ferrari. Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res. 26:235–243, 2009.

    Article  CAS  PubMed  Google Scholar 

  10. England, C. G., A. M. Gobin, and H. B. Frieboes. Evaluation of uptake and distribution of gold nanoparticles in solid tumors. Eur. Phys. J. Plus 130:231, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  11. England, C. G., J. S. Huang, K. T. James, G. D. Zhang, A. M. Gobin, and H. B. Frieboes. Detection of phosphatidylcholine-coated gold nanoparticles in orthotopic pancreatic adenocarcinoma using hyperspectral imaging. PLoS ONE 10:e0129172, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. England, C. G., J. S. Huang, K. T. James, X. Zhang, A. M. Gobin, and H. B. Frieboes. Detection of phosphatidylcholine-coated gold nanoparticles in orthotopic pancreatic adenocarcinoma using hyperspectral imaging. PLoS ONE 10:e0129172, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. England, C. G., M. C. Miller, A. Kuttan, J. O. Trent, and H. B. Frieboes. Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles. Eur. J. Pharm. Biopharm. 92:120–129, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. England, C. G., T. Priest, G. Zhang, X. Sun, D. N. Patel, L. R. McNally, V. van Berkel, A. M. Gobin, and H. B. Frieboes. Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles. Int. J. Nanomed. 8:3603–3617, 2013.

    Google Scholar 

  15. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nat. Phys. Sci. 241:20–22, 1973.

    Article  CAS  Google Scholar 

  16. Frieboes, H. B., J. P. Sinek, O. Nalcioglu, J. P. Fruehauf, and V. Cristini. Nanotechnology in cancer drug therapy: a biocomputational approach. In: BioMEMS and Biomedical Nanotechnology, edited by M. Ferrari, A. P. Lee, and L. J. Lee. New York: Springer, 2006, pp. 435–460.

    Chapter  Google Scholar 

  17. Frieboes, H. B., M. Wu, J. Lowengrub, P. Decuzzi, and V. Cristini. A computational model for predicting nanoparticle accumulation in tumor vasculature. PLoS ONE 8:e56876, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao, Y., M. Li, B. Chen, Z. Shen, P. Guo, M. G. Wientjes, and J. L. Au. Predictive models of diffusive nanoparticle transport in 3-dimensional tumor cell spheroids. AAPS J. 15:816–831, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Godin, B., W. H. Driessen, B. Proneth, S. Y. Lee, S. Srinivasan, R. Rumbaut, W. Arap, R. Pasqualini, M. Ferrari, and P. Decuzzi. An integrated approach for the rational design of nanovectors for biomedical imaging and therapy. Adv. Genet. 69:31–64, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hait, W. N., and T. W. Hambley. Targeted cancer therapeutics. Cancer Res 69:1263–1267, 2009.

    Article  CAS  PubMed  Google Scholar 

  21. Hall, R. D., T. M. Le, D. E. Haggstrom, and R. D. Gentzier. Angiogenesis inhibition as a therapeutic strategy in non-small cell lung cancer (NSCLC). Transl. Lung Cancer Res. 4:515–523, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Izuishi, K., K. Kato, T. Ogura, T. Kinoshita, and H. Esumi. Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res. 60:6201–6207, 2000.

    CAS  PubMed  Google Scholar 

  23. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7:987–989, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Kaddi, C. D., J. H. Phan, and M. D. Wang. Computational nanomedicine: modeling of nanoparticle-mediated hyperthermal cancer therapy. Nanomedicine (Lond) 8:1323–1333, 2013.

    Article  CAS  Google Scholar 

  25. Koziara, J. M., T. R. Whisman, M. T. Tseng, and R. J. Mumper. In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors. J Control Release 112:312–319, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Leighl, N. B. Treatment paradigms for patients with metastatic non-small-cell lung cancer: first-, second-, and third-line. Curr. Oncol. 19:S52–58, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, M., K. T. Al-Jamal, K. Kostarelos, and J. Reineke. Physiologically based pharmacokinetic modeling of nanoparticles. Acs Nano 4:6303–6317, 2010.

    Article  CAS  PubMed  Google Scholar 

  28. Li, M., E. A. Czyszczon, and J. J. Reineke. Delineating intracellular pharmacokinetics of paclitaxel delivered by PLGA nanoparticles. Drug Deliv. Transl. Res. 3:551–561, 2013.

    Article  CAS  PubMed  Google Scholar 

  29. Li, M., Z. Panagi, K. Avgoustakis, and J. Reineke. Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. Int. J. Nanomed. 7:1345–1356, 2012.

    Article  CAS  Google Scholar 

  30. Li, M., and J. Reineke. Mathematical modelling of nanoparticle biodistribution: extrapolation among intravenous, oral and pulmonary administration routes. Int. J. Nano Biomater. 3:222–238, 2011.

    Article  CAS  Google Scholar 

  31. Ma, E., A. Ren, G. Baoxiang, M. Yang, C. Zhao, W. Wang, and K. Li. ROI for outlining an entire tumor is a reliable approach for quantification of lung cancer tumor vascular parameters using CT perfusion. Oncotargets Ther 9:2377–2384, 2016.

    CAS  Google Scholar 

  32. Macklin, P., and J. Lowengrub. Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol. 245:677–704, 2007.

    Article  CAS  PubMed  Google Scholar 

  33. Macklin, P., and J. S. Lowengrub. A new ghost cell/level set method for moving boundary problems: application to tumor growth. J. Sci. Comput. 35:266–299, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Macklin, P., S. McDougall, A. R. Anderson, M. A. Chaplain, V. Cristini, and J. Lowengrub. Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58:765–798, 2009.

    Article  PubMed  Google Scholar 

  35. McDougall, S. R., A. R. Anderson, and M. A. Chaplain. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241:564–589, 2006.

    Article  PubMed  Google Scholar 

  36. Miele, E., G. P. Spinelli, E. Miele, E. Di Fabrizio, E. Ferretti, S. Tomao, and A. Gulino. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int. J. Nanomed. 7:3637–3657, 2012.

    Google Scholar 

  37. Minchinton, A. I., and I. F. Tannock. Drug penetration in solid tumours. Nat. Rev. Cancer 6:583–592, 2006.

    Article  CAS  PubMed  Google Scholar 

  38. Nugent, L. J., and R. K. Jain. Extravascular diffusion in normal and neoplastic tissues. Cancer Res. 44:238–244, 1984.

    CAS  PubMed  Google Scholar 

  39. Primeau, A. J., A. Rendon, D. Hedley, L. Lilge, and I. F. Tannock. The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin. Cancer Res. 11:8782–8788, 2005.

    Article  CAS  PubMed  Google Scholar 

  40. Reichel, D., L. T. Curtis, E. Ehlman, B. MarkEvers, P. Rychahou, H. B. Frieboes, and Y. Bae. Development of halofluorochromic polymer nanoassemblies for the potential detection of liver metastatic colorectal cancer tumors using experimental and computational approaches. Pharm. Res. 34:2385–2402, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Siddik, Z. H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279, 2003.

    Article  CAS  Google Scholar 

  42. Stewart, D. J. Mechanisms of resistance to cisplatin and carboplatin. Crit. Rev. Oncol. Hematol. 63:12–31, 2007.

    Article  PubMed  Google Scholar 

  43. van de Ven, A. L., B. Abdollahi, C. J. Martinez, L. A. Burey, M. D. Landis, J. C. Chang, M. Ferrari, and H. B. Frieboes. Modeling of nanotherapeutics delivery based on tumor perfusion. New J. Phys. 15:055004, 2013.

    Article  CAS  Google Scholar 

  44. van de Ven, A. L., M. Wu, J. Lowengrub, S. R. McDougall, M. A. Chaplain, V. Cristini, M. Ferrari, and H. B. Frieboes. Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP Adv. 2:11208, 2012.

    Article  CAS  PubMed  Google Scholar 

  45. Warren, K. E. Novel therapeutic delivery approaches in development for pediatric gliomas. CNS Oncol. 2:427–435, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, M., H. B. Frieboes, M. A. J. Chaplain, S. R. McDougall, V. Cristini, and J. Lowengrub. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems. J. Theor. Biol. 355:194–207, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, M., H. B. Frieboes, S. R. McDougall, M. A. Chaplain, V. Cristini, and J. Lowengrub. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J. Theor. Biol. 320:131–151, 2013.

    Article  PubMed  Google Scholar 

  48. Zhong, H., A. M. De Marzo, E. Laughner, M. Lim, D. A. Hilton, D. Zagzag, P. Buechler, W. B. Isaacs, G. L. Semenza, and J. W. Simons. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59:5830–5835, 1999.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

HBF acknowledges partial support by the National Institutes of Health/National Cancer Institute Grant R15CA203605.

Conflict of interest

The authors declare no known conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann B. Frieboes.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, H.A., Frieboes, H.B. Evaluation of Drug-Loaded Gold Nanoparticle Cytotoxicity as a Function of Tumor Vasculature-Induced Tissue Heterogeneity. Ann Biomed Eng 47, 257–271 (2019). https://doi.org/10.1007/s10439-018-02146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02146-4

Keywords

Navigation