Skip to main content

Nanotechnology in Cancer Drug Therapy: A Biocomputational Approach

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

Although the clinical arsenal in treating cancer has been greatly extended in recent years with the application of new drugs and therapeutic modalities, the three basic approaches continue to be (in order of success) surgical resection, radiation, and chemotherapy. The latter treatment modality is primarily directed at metastatic cancer, which generally has a poor prognosis. A significant proportion of research investment is focused on improving the efficacy of chemotherapy, which is often the only hope in treating a cancer patient. Yet the challenges with chemotherapy are many. They include drug resistance by tumor cells, toxic effects on healthy tissue, inadequate targeting, and impaired transport to the tumor. Determination of proper drug dosage and scheduling, and optimal drug concentration can also be difficult. Finally, drug release kinetics at the tumor site is an important aspect of chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts et al. Molecular Biology of the Cell. Taylor & Francis Group, New York, 2002.

    Google Scholar 

  2. R.P. Araujo and D.L.S. McElwain. A history of the study of solid tumour growth: the contribution of mathematical modeling. Bull. Math. Biol., June 2004. In press.

    Google Scholar 

  3. D. Barbolosi and A. Iliadis. Optimizing drug regimens in cancer chemotherapy: a simulation study using a PK-PD model. Comp. Biol. Med., 31:157–172, 2001.

    Article  Google Scholar 

  4. L.A. Bauer. Applied Clinical Pharmacokinetics. Mc-Graw Hill, New York. pp. 26–45, 2001.

    Google Scholar 

  5. L.T. Baxter and R.K. Jain. Pharmacokinetic analysis of the microscopic distribution of enzyme-conjugated antibodies and prodrugs: Comparison with experimental data. Brit. J. Canc., 73(4):447–456, 1996.

    Google Scholar 

  6. K.L. Black and N.S. Ningaraj. Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control., 11(3):165–173, 2004.

    Google Scholar 

  7. G. Bonadonna, M. Zambetti, and P. Valagussa. Sequential or alternating doxorubicin and CMF regimens in breast cancer with more than three positive nodes: ten year results. J. Am. Med. Assoc., 273:542–547, 1995.

    Article  Google Scholar 

  8. I. Brigger, C. Dubernet, and P. Couvreur. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Del. Reviews., 54(5):631–651, 2002.

    Article  Google Scholar 

  9. CCO Formulary, Liposomal Doxorubicin, October 2003.

    Google Scholar 

  10. M. Chaplain and A. Anderson. Mathematical modelling of tumour-induced angiogenesis: network growth and structure. Cancer Treat Res., 117:51–75, 2004.

    Google Scholar 

  11. M.L. Citron, D.A. Berry, C. Cirrincione, C. Hudis, E.P. Winer, W.J. Gradishar, N.E. Davidson, S. Martino, R. Livingston, J.N. Ingle, E.A. Perez, J. Carpenter, D. Hurd, J.F. Holland, B.L. Smith, C.I. Sartor, E.H. Leung, J. Abrams, R.L. Schilsky, H.B. Muss, and L. Norton. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of intergroup trial C9741/cancer and leukemia group B trial 9741. J. Clin. Oncol., 21(8):1431–1439, 2003.

    Article  Google Scholar 

  12. P. Costa and J.M.S. Lobo. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 13:123–133, 2001.

    Article  Google Scholar 

  13. V. Cristini, J. Lowengrub, and Q. Nie. Nonlinear simulation of tumor growth. J. Math. Biol., 46:191–224, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  14. V. Cristini, H.B. Frieboes, R. Getemby, S. Corenta, M. Ferrari, and S. Sinek. Morphological instability and cancer inussion. Clin. Cancer Res., (in press) 2005.

    Google Scholar 

  15. Z. Cui, C.H. Hsu, and R.J. Mumper. Physical characterization and macrophage cell uptake of mannan-coated nanoparticles. Drug Dev. Ind. Pharm., 29(6):689–700, 2003.

    Article  Google Scholar 

  16. M.S. Dordal, A.C. Ho, M. Jackson-Stone, Y.F. Fu, C.L. Goolsby, and J.N. Winter. Flowcytometric assessment of the cellular pharmacokinetics of fluorescent drugs. Cytometry, 20:307–314, 1995.

    Article  Google Scholar 

  17. P. Elamanchili, M. Diwan, M. Cao, and J. Samuel. Characterization of poly(D,L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine, 22(19):2406–12, 2004.

    Article  Google Scholar 

  18. R.E. Eliaz, S. Nir, C. Marty, Jr. F.C. Szoka. Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes. Canc. Res., 64:711–718, 2004.

    Article  Google Scholar 

  19. N. Faisant, J. Siepmann, and J.P. Benoit. PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release. Eur. J. Pharm. Sci., 15(4):355–366, 2002.

    Article  Google Scholar 

  20. S.S. Feng and S. Chien. Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Eng. Sci., 58:4087–4114, 2003.

    Article  Google Scholar 

  21. X. Gao, Y. Cui, R.M. Levenson, L.W. Chung, and S. Nie. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 22(8):969–76, 2004.

    Article  Google Scholar 

  22. B. Gompertz. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R Soc. Lond., 115:513–583, 1825.

    Google Scholar 

  23. R. Gref, P. Couvreur, G. Barratt, and E. Mysiakine. Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials, 24(24):4529–4537, 2003.

    Article  Google Scholar 

  24. C.J. Gulledge and M.W. Dewhirst. Tumor oxygenation: a matter of supply and demand. Anticancer Res., 16:741–750, 1996.

    Google Scholar 

  25. H. Hashizume, P. Baluk, S. Morikawa, J.W. McLean, G. Thurston, S. Roberge, R.K. Jain, and D.M. McDonald. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol., 156(4):1363–1380, 2000.

    Google Scholar 

  26. T. Higuchi. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci., 50:874–875, 1961.

    Article  Google Scholar 

  27. S.K. Hobbs, W.L. Monsky, F. Yuan, W.G. Roberts, L. Griffith, V.P. Torchilin, and R.K. Jain. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences of the United States of America. vol. 95, pp. 4607–4612, 1998.

    Article  Google Scholar 

  28. M. Holz and A. Fahr. Compartment modeling. Adv. Drug Del. Rev., 48(2–3):249–264, 2001.

    Article  Google Scholar 

  29. M. Hombreiro-Perez, J. Siepmann, C. Zinutti, A. Lamprecht, N. Ubrich, M. Hoffman, R. Bodmeier, and P. Maincent. Non-degradable microparticles containing a hydrophilic and/or a lipophilic drug: preparation, characterization and drug release modeling. J. Control. Rel., 88(3):413–428, 2003.

    Article  Google Scholar 

  30. A. Ito, Y. Kuga, H. Honda, H. Kikkawa, A. Horiuchi, Y. Watanabe, and T. Kobayashi. Magnetite nanoparticleloaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett., 212(2):167–175, 2004.

    Article  Google Scholar 

  31. T.L. Jackson and H.M. Byrne. A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math. Biosci., 164:17–38, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  32. R.K. Jain and L.E. Gerlowski. Extravascular transport in normal and tumor tissues. Crit. Rev. Oncol. Hematol., 5(2):115–170, 1986.

    Google Scholar 

  33. R.K. Jain. Determinants of tumor blood flow: a review. Canc. Res., 48:2641–2658, 1988.

    Google Scholar 

  34. R.K. Jain and L.T. Baxter. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure. Cancer Res., 48:7022–7032, 1988.

    Google Scholar 

  35. R.K. Jain. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. (Suppl.), 50:814s–819s, 1990.

    Google Scholar 

  36. R.K. Jain. Delivery of molecular medicine to solid tumors: Lessons from in vivo imaging of gene expression and function. J. Control. Rel., 74:7–25, 2001.

    Article  Google Scholar 

  37. R.K. Jain. Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nature Med., 7(9):987–989, 2001.

    Article  Google Scholar 

  38. H. Kitano. Computational systems biology. Nature, 420:206–210, 2002.

    Article  Google Scholar 

  39. N. Kohler, G.E. Fryxell, and M. Zhang. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J. Am. Chem. Soc., 126(23):7206–7211, 2004.

    Article  Google Scholar 

  40. K.Kosmidis, P. Argyrakis, and P. Macheras.Areappraisal of drug release laws using Monte Carlo simulations: the prevalence of the Weibull function. Pharm. Res., 20(7):988–995, 2003.

    Article  Google Scholar 

  41. J. Kreuter. Nanoparticles. In J. Kreuter, (ed.), Colloidal Drug Delivery Systems, Marcel Dekker, Inc. New York, Basel, Hong Kong, 1994.

    Google Scholar 

  42. A.K. Laird. Dynamics of tumor growth. Br. J. Canc., 18:490–502, 1964.

    Google Scholar 

  43. R. Langer and N.A. Peppas. Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: A review. Rev. Macromol. Chem. Phys., C23:61–126, 1983.

    Google Scholar 

  44. R. Langer. Drug delivery and targeting. Nature, 392:6679, 5–10, 1998.

    Google Scholar 

  45. R. Langer. Biomaterials in drug delivery and tissue engineering: One laboratory’s experience. Acc. Chem. Res., 33:94–101, 2000.

    Article  Google Scholar 

  46. J. Lankelma. Tissue transport of anti-cancer drugs. Curr. Pharm. Des., 8:1987–1993, 2002.

    Article  Google Scholar 

  47. K.W. Leong, B.C. Brott and R. Langer. Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation and release characteristics. J. Biomed. Mat. Res., 19:941–955, 1985.

    Article  Google Scholar 

  48. A. Mantovani. Biology of disease. Tumor-associated macrophages in neoplastic progression: a paradigm for the in vitro function of chemokines. Lab. Invest., 71:5–16, 1994.

    Google Scholar 

  49. U. Massing and S. Fuxius. Liposomal formulations of anticancer drugs: selectivity and effectiveness. Drug Resis. Updat., 3:171–177, 2000.

    Article  Google Scholar 

  50. S.R. McDougall, A.R.A. Anderson, and M.A.J. Chaplain et al. Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol., 64(4):673–702, 2002.

    Article  Google Scholar 

  51. K. Maruyama. In vivo targeting by liposomes. Biol. Pharm. Bull., 23(7):791–799, 2000.

    Google Scholar 

  52. L.D. Mayer and J.A. Shabbits. The role of liposomal drug delivery in molecular and pharmacological strategies to overcome multidrug resistance. Can. Metas. Rev., 20:87–93, 2001.

    Article  Google Scholar 

  53. B. Narasimhan. Mathematical models describing polymer dissolution: Consequences for drug delivery. Adv. Drug Del. Rev., 48(2–3):195–210, 2001.

    Article  Google Scholar 

  54. National Cancer Institute (NCI) website at http://press2.nci.nih.gov/sciencebehind/nanotech.

    Google Scholar 

  55. National Institute of Nanotechnology (NINT) of Canada at www.industrymailout.com/industry/do/news/view?id=9003&print=1.

    Google Scholar 

  56. P. Netti and R.K. Jain. Interstitial transport in solid tumors. In L. Preziosi (ed.), Cancer Modeling and Simulation, Chapman & Hall/CRC, Boca Raton, London, New York, Washington, pp. 62–65, 2003.

    Google Scholar 

  57. National Institutes of Health (NIH) website at http://press2.nci.nih.gov/sciencebehind/nanotech.

    Google Scholar 

  58. L. Norton. Implications of kinetic heterogeneity in clinical oncology. Semin. Oncol., 12:231–249, 1985.

    Google Scholar 

  59. L. Norton and R. Simon. The Norton-Simon hypothesis revisited. Cancer. Treat. Res., 70:163–169, 1986.

    Google Scholar 

  60. L. Norton. A Gompertzian model of human breast cancer growth. Cancer. Res., 48:7067–7071, 1988.

    Google Scholar 

  61. L. Norton. Theoretical concepts and the emerging role of taxanes in adjuvant therapy. Oncologist, 3(suppl):30–35, 2001.

    Article  Google Scholar 

  62. L. Norton. Karnofsky Memorial Lecture. ASCO, 2004.

    Google Scholar 

  63. T.P. Padera, B.R. Stoll, J.B. Tooredman, D. Capen, E. di Tomaso, and R.K. Jain. Cancer cells compress intratumour vessels. Nature, 427:695, 2004.

    Article  Google Scholar 

  64. R.S. Parker and F.J. Doyle III. Control-relevant modeling in drug delivery. Adv. Drug Del. Rev., 48(2–3):211–228, 2001.

    Article  Google Scholar 

  65. N.A. Peppas. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta. Helv., 60:110–111, 1985.

    Google Scholar 

  66. P.J. Polverini. How the extracellular matrix and macrophages contribute to angiogenesis-dependent diseases. Eur. J. Cancer, 32A(14):2430–2438, 1996.

    Article  Google Scholar 

  67. F. Quian, G.M. Saidel, D.M. Sutton, A. Exner, and J. Gao. Combined modeling and experimental approach for the development of dual-release polymer millirods. J. Control. Rel., 83:427–435, 2002.

    Article  Google Scholar 

  68. P. Sapra and T.M. Allen. Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res., 42:439–462, 2003.

    Article  Google Scholar 

  69. M. Sarntinoranont, F. Rooney, and M. Ferrari. Interstitial stress and fluid pressure within a growing tumor. Ann. Biomed. Eng., 31:327–335, 2003.

    Article  Google Scholar 

  70. J. Siepmann and A. Goepferich. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Del. Rev., 48(2–3):229–247, 2001.

    Article  Google Scholar 

  71. J. Siepmann, N. Faisant, and J.P. Benoit.Anewmathematical model quantifying drug release from bioerodible microparticles using Monte Carlo simulations. Pharm. Res. 19(12):1885–1893, 2002.

    Article  Google Scholar 

  72. J. Siepmann and N.A. Peppas. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Del. Rev., 48(2–3):139–157, 2003.

    Google Scholar 

  73. J. Siepmann, N. Faisant, J. Akiki, J. Richard, and J.P. Benoit. Effect of the size of biodegradable micro particles on drug release: experiment and theory. J. Control. Rel., 96(1):123–134, 2004.

    Article  Google Scholar 

  74. S. Simoes, J.N. Moreira, C. Fonseca, N. Duezguenes, and M. Pedroso de Lima. On the formulation of pH-sensitive liposomes with long circulation times. Adv. Drug Del. Rev., 56:947–965, 2004.

    Article  Google Scholar 

  75. J. Sinek, H.B. Frieboes, X. Zheng, and V. Cristini. Chemotherapy simulations demonstrate fundamental transport limitations involving nanoparticles. Biomed. Microdev., 6(4):297–309, 2004.

    Article  Google Scholar 

  76. T. Sonoda, H. Kobayashi, T. Kaku, T. Hirakawa, and H. Nakano. Expression of angiogenesis factors in monolayer culture, multicellular spheroid and in vivo transplanted tumor by human ovarian cancer cell lines. Cancer Lett., 196:229–237, 2003.

    Article  Google Scholar 

  77. M.Y. Su, A.A. Najafi, and O. Nalcioglu. Regional comparison of tumor vascularity and permeability parameters measured by albumin-Gd-DTPA and Gd-DTPA. Magn. Reson. Med., 34(3):402–411, 1995.

    Article  Google Scholar 

  78. M.Y. Su, A. Muhler, X. Lao, and O. Nalcioglu. Tumor characterization with dynamic contrast-enhanced MRI using MR contrast agents of various molecular weights. Magn. Reson. Med., 39(2):259–69, 1998.

    Article  Google Scholar 

  79. B.G. Sumpter, D.W. Noid, and M.D. Barnes. Recent developments in the formation, characterization, and simulation of micron and nano-scale droplets of amorphous polymer blends and semi-crystalline polymers. Polymer, 44(16):4389–4403, 2003.

    Article  Google Scholar 

  80. Trends in NanoTechnology (TNT) 2001 at nanoword.net/library/weekly/ aa091201a.htm.

    Google Scholar 

  81. P. Veng-Pedersen. Noncompartmentally-based pharmacokinetic modeling. Adv. Drug Del. Rev., 48(2–3):265–300, 2001.

    Article  Google Scholar 

  82. C.H. Wang, J. Li, and C.S. Teo et al. The delivery of BCNU to brain tumors. J. Control. Rel., 61(1–2):21–41, 1999.

    Article  Google Scholar 

  83. W. Weibull. A statistical distribution of wide applicability. J. Appl. Mechan., 18:293–297, 1951.

    MATH  Google Scholar 

  84. C.P. Winsor. The Gompertz curve as a growth curve. Proc. Natl. Acad. Sci., 18:1–8, 1932.

    Article  Google Scholar 

  85. F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D.A. Berk, V.P. Torchilin, and R.K. Jain.Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res., 55(17):3752–3756, 1995.

    Google Scholar 

  86. H.S. Zaki, M.D. Jenkinson, D.G. Du Plessis, T. Smith, and N.G. Rainov. Vanishing contrast enhancement in malignant glioma after corticosteroid treatment. Acta Neurochir., 146:841–845, 2004.

    Article  Google Scholar 

  87. M. Zhang, Z. Yan, L.L. Chow, and C.H. Wan. Simulation of drug release from biodegradable polymeric microspheres with bulk and surface erosions. J. Pharm. Sci., 92(10):2040–2056, 2003.

    Article  Google Scholar 

  88. X. Zheng, S.M. Wise, and V. Cristini. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Bio., 67:211–259, 2005.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Frieboes, H.B., Sinek, J.P., Nalcioglu, O., Fruehauf, J.P., Cristini, V. (2006). Nanotechnology in Cancer Drug Therapy: A Biocomputational Approach. In: Ferrari, M., Lee, A.P., Lee, L.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25842-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25842-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25563-7

  • Online ISBN: 978-0-387-25842-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics