Skip to main content

Advertisement

Log in

Cell Mechanosensors and the Possibilities of Using Magnetic Nanoparticles to Study Them and to Modify Cell Fate

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The use of magnetic nanoparticles (MNPs) is a promising technique for future advances in biomedical applications. This idea is supported by the availability of MNPs that can target specific cell components, the variety of shapes of MNPs and the possibility of finely controlling the applied magnetic forces. To examine this opportunity, here we review the current developments in the use of MNPs to mechanically stimulate cells and, specifically, the cell mechanotransduction systems. We analyze the cell components that may act as mechanosensors and their effect on cell fate and we focus on the promising possibilities of controlling stem-cell differentiation, inducing cancer-cell death and treating nervous-system diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ahamed, M., M. S. AlSalhi, and M. K. J. Siddiqui. Silver nanoparticle applications and human health. Clin. Chim. Acta 411:1841–1848, 2010.

    Article  CAS  PubMed  Google Scholar 

  2. Amano, M., M. Nakayama, and K. Kaibuchi. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton 67:545–554, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arulmoli, J., M. M. Pathak, L. P. McDonnell, J. L. Nourse, F. Tombola, J. C. Earthman, and L. A. Flanagan. Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner. Sci. Rep. 5:8499, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Asin, L., M. R. Ibarra, A. Tres, and G. F. Goya. Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration. Pharm. Res. 29:1319–1327, 2012.

    Article  CAS  PubMed  Google Scholar 

  5. Bernal, A., L. M. Perez, B. De Lucas, N. S. Martin, A. Kadow-Romacker, G. Plaza, K. Raum, and B. G. Galvez. Low-intensity pulsed ultrasound improves the functional properties of cardiac mesoangioblasts. Stem Cell Rev. 11:852–865, 2015.

    Article  CAS  PubMed  Google Scholar 

  6. Blumenthal, N. R., O. Hermanson, B. Heimrich, and V. P. Shastri. Stochastic nanoroughness modulates neuron-astrocyte interactions and function via mechanosensing cation channels. Proc. Natl. Acad. Sci. USA 111:16124–16129, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bray, D. Axonal growth in response to experimentally applied nechanical tension. Dev. Biol. 102:379–389, 1984.

    Article  CAS  PubMed  Google Scholar 

  8. Chakraborty, M., S. Jain, and V. Rani. Nanotechnology: emerging tool for diagnostics and therapeutics. Appl. Biochem. Biotechnol. 165:1178–1187, 2011.

    Article  CAS  PubMed  Google Scholar 

  9. Chatelin, S., A. Constantinesco, and R. Willinger. Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology 47:255–276, 2010.

    PubMed  Google Scholar 

  10. Cheng, D., X. Li, G. Zhang, and H. Shi. Morphological effect of oscillating magnetic nanoparticles in killing tumor cells. Nanoscale Res. Lett. 9:195, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cho, M. H., E. J. Lee, M. Son, J. Lee, D. Yoo, J. Kim, S. W. Park, J. Shin, and J. Cheon. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat. Mater. 11:1038–1043, 2012.

    Article  CAS  PubMed  Google Scholar 

  12. Choi, W. I., J. Kim, S. U. Heo, Y. Y. Jeong, Y. H. Kim, and G. Tae. The effect of mechanical properties of iron oxide nanoparticle-loaded functional nano-carrier on tumor targeting and imaging. J. Controlled Release 162:267–275, 2012.

    Article  CAS  Google Scholar 

  13. Coste, B., J. Mathur, M. Schmidt, T. J. Earley, S. Ranade, M. J. Petrus, A. E. Dubin, and A. Patapoutian. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. del Rio, A., R. Perez-Jimenez, R. Liu, P. Roca-Cusachs, J. M. Fernandez, and M. P. Sheetz. Stretching single talin rod molecules activates vinculin binding. Science 323:638–641, 2009.

    Article  PubMed  Google Scholar 

  15. Di Carlo, D. A mechanical biomarker of cell state in medicine. J. Lab. Autom. 17:32–42, 2012.

    Article  PubMed  Google Scholar 

  16. Di Corato, R., A. Espinosa, L. Lartigue, M. Tharaud, S. Chat, T. Pellegrino, C. Menager, F. Gazeau, and C. Wilhelm. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35:6400–6411, 2014.

    Article  PubMed  Google Scholar 

  17. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  CAS  PubMed  Google Scholar 

  18. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Evangelisti, E., D. Wright, M. Zampagni, R. Cascella, C. Fiorillo, S. Bagnoli, A. Relini, D. Nichino, T. Scartabelli, and B. Nacmias. Lipid rafts mediate amyloid-induced calcium dyshomeostasis and oxidative stress in Alzheimer’s disease. Curr. Alzheimer Res. 10:143–153, 2013.

    Article  CAS  PubMed  Google Scholar 

  20. Fettiplace, R., and C. M. Hackney. The sensory and motor roles of auditory hair cells. Nat. Rev. Neurosci. 7:19–29, 2006.

    Article  CAS  PubMed  Google Scholar 

  21. Grashoff, C., B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–266, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayakawa, K., H. Tatsumi, and M. Sokabe. Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J. Cell Biol. 195:721–727, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hemphill, M. A., S. Dauth, C. J. Yu, B. E. Dabiri, and K. K. Parker. Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction. Neuron 85:1177–1192, 2015.

    Article  CAS  PubMed  Google Scholar 

  24. Henstock, J. R., M. Rotherham, H. Rashidi, K. M. Shakesheff, and A. J. El Haj. Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: applications for injectable cell therapy. Stem Cells Transl. Med. 3:1363–1374, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huiskes, R., R. Ruimerman, G. H. van Lenthe, and J. D. Janssen. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706, 2000.

    Article  CAS  PubMed  Google Scholar 

  26. Ingber, D. E. Cellular basis of mechanotransduction. Biol. Bull. 194:323–325, 1998.

    Article  CAS  PubMed  Google Scholar 

  27. Ito, Y., T. Kimura, K. Nam, A. Katoh, T. Masuzawa, and A. Kishida. Effects of vibration on differentiation of cultured PC12 Cells. Biotechnol. Bioeng. 108:592–599, 2011.

    Article  CAS  PubMed  Google Scholar 

  28. Iwasaki, H., S. Eguchi, H. Ueno, F. Marumo, and Y. Hirata. Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am. J. Physiol. Heart Circ. Physiol. 278:H521–H529, 2000.

    CAS  PubMed  Google Scholar 

  29. Jun, Y., J. Lee, and J. Cheon. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. 47:5122–5135, 2008.

    Article  CAS  Google Scholar 

  30. Jutila, A. A., D. L. Zignego, B. K. Hwang, J. K. Hilmer, T. Hamerly, C. A. Minor, S. T. Walk, and R. K. June. Candidate mediators of chondrocyte mechanotransduction via targeted and untargeted metabolomic measurements. Arch. Biochem. Biophys. 545:116–123, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kalil, K., and E. Dent. Touch and go: guidance cues signal to the growth cone cytoskelleton. Curr. Opin. Neurobiol. 15:521–526, 2005.

    Article  CAS  PubMed  Google Scholar 

  32. Kanczler, J. M., H. S. Sura, J. Magnay, D. Green, R. O. C. Oreffo, J. P. Dobson, and A. J. El Haj. Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng. Part A 16:3241–3250, 2010.

    Article  CAS  PubMed  Google Scholar 

  33. Kelley, S. K., and A. Ashkenazi. Targeting death receptors in cancer with Apo2/TRAIL. Curr. Opin. Pharmacol. 4:333–339, 2004.

    Article  CAS  PubMed  Google Scholar 

  34. Keung, A. J., E. M. de Juan-Pardo, D. V. Schaffer, and S. Kumar. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells 29:1886–1897, 2011.

    Article  CAS  PubMed  Google Scholar 

  35. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7:165–176, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kilinc, D., A. Blasiak, J. J. O’Mahony, and G. U. Lee. Low piconewton towing of CNS axons against diffusing and surface-bound repellents requires the inhibition of motor protein-associated pathways. Sci. Rep. 4:7128, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, D., E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh, M. S. Lesniak, and V. Novosad. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 9:165–171, 2010.

    Article  CAS  PubMed  Google Scholar 

  38. Kolhatkar, A. G., A. C. Jamison, D. Litvinov, R. C. Willson, and T. R. Lee. Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14:15977–16009, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Labeit, S., B. Kolmerer, and W. Linke. The giant protein titin: emerging roles in physiology and pathophysiology. Circ. Res. 80:290–294, 1997.

    Article  CAS  PubMed  Google Scholar 

  40. Lange, S., F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. Gunnarsson, S. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edstrom, E. Ehler, B. Udd, and M. Gautel. The kinase domain of titin controls muscle gene expression and protein turnover. Science 308:1599–1603, 2005.

    Article  CAS  PubMed  Google Scholar 

  41. Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J . 79:144–152, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu, D., C. Chen, C. Lai, S. Soni, T. Lam, C. Le, E. Y. Chen, T. Nguyen, and W. Chin. Microgrooved surface modulates neuron differentiation in human embryonic stem cells. Hum. Embryonic Stem Cell Protoc., 2016. doi:10.1007/7651_2014_81

    Google Scholar 

  43. Markin, V. S., and B. Martinac. Mechanosensitive ion channels as reporters of bilayer expansion: a theoretical-model. Biophys. J . 60:1120–1127, 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsumoto, Y., R. Chen, P. Anikeeva, and A. Jasanoff. Engineering intracellular biomineralization and biosensing by a magnetic protein. Nat. Commun. 6:8721, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mitra, S. K., and D. D. Schlaepfer. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 18:516–523, 2006.

    Article  CAS  PubMed  Google Scholar 

  46. Nikukar, H., S. Reid, P. M. Tsimbouri, M. O. Riehle, A. S. G. Curtis, and M. J. Dalby. Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. ACS Nano 7:2758–2767, 2013.

    Article  CAS  PubMed  Google Scholar 

  47. Nunnally, M. H., J. M. Dangelo, and S. W. Craig. Filamin concentration in cleavage furrow and midbody region: frequency of occurrence compared with that of alpha-actinin and myosin. J. Cell Biol. 87:219–226, 1980.

    Article  CAS  PubMed  Google Scholar 

  48. Paluch, E. K., C. M. Nelson, N. Biais, B. Fabry, J. Moeller, B. L. Pruitt, C. Wollnik, G. Kudryasheva, F. Rehfeldt, and W. Federle. Mechanotransduction: use the force(s). BMC Biol. 13:47, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.

    Article  CAS  PubMed  Google Scholar 

  50. Pathak, M. M., J. L. Nourse, T. Tran, J. Hwe, J. Arulmoli, T. L. Dai Trang, E. Bernardis, L. A. Flanagan, and F. Tombola. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc. Natl. Acad. Sci. USA 111:16148–16153, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pelham, R., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94:13661–13665, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Philip, J. T., and K. N. Dahl. Nuclear mechanotransduction: response of the lamina to extracellular stress with implications in aging. J. Biomech. 41:3164–3170, 2008.

    Article  PubMed  Google Scholar 

  53. Plaza, G. R., and T. Q. P. Uyeda. Contraction speed of the actomyosin cytoskeleton in the absence of the cell membrane. Soft Matter 9:4390–4400, 2013.

    Article  CAS  Google Scholar 

  54. Plaza, G. R., T. Q. P. Uyeda, Z. Mirzaei, and C. A. Simmons. Study of the influence of actin-binding proteins using linear analyses of cell deformability. Soft Matter 11:5435–5446, 2015.

    Article  CAS  PubMed  Google Scholar 

  55. Pounder, N. M., and A. J. Harrison. Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics 48:330–338, 2008.

    Article  CAS  PubMed  Google Scholar 

  56. Puchner, E. M., A. Alexandrovich, A. L. Kho, U. Hensen, L. V. Schaefer, B. Brandmeier, F. Graeter, H. Grubmueller, H. E. Gaub, and M. Gautel. Mechanoenzymatics of titin kinase. Proc. Natl. Acad. Sci. USA 105:13385–13390, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qiao, R., Q. Jia, S. Huewel, R. Xia, T. Liu, F. Gao, H. Galla, and M. Gao. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano 6:3304–3310, 2012.

    Article  CAS  PubMed  Google Scholar 

  58. Ren, Y., J. C. Effler, M. Norstrom, T. Luo, R. A. Firtel, P. A. Iglesias, R. S. Rock, and D. N. Robinson. Mechanosensing through cooperative interactions between myosin II and the actin crosslinker cortexillin I. Curr. Biol. 19:1421–1428, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ren, X. D., W. B. Kiosses, D. J. Sieg, C. A. Otey, D. D. Schlaepfer, and M. A. Schwartz. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 113(Pt 20):3673–3678, 2000.

    CAS  PubMed  Google Scholar 

  60. Sachs, F. Stretch-activated ion channels: what are they? Physiology 25:50–56, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sadhukha, T., T. S. Wiedmann, and J. Panyam. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34:5163–5171, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Samuel, M. S., J. I. Lopez, E. J. McGhee, D. R. Croft, D. Strachan, P. Timpson, J. Munro, E. Schroeder, J. Zhou, V. G. Brunton, N. Barker, H. Clevers, O. J. Sansom, K. I. Anderson, V. M. Weaver, and M. F. Olson. Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19:776–791, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sawada, Y., M. Tamada, B. J. Dubin-Thaler, O. Cherniavskaya, R. Sakai, S. Tanaka, and M. P. Sheetz. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015–1026, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schrenk-Siemens, K., H. Wende, V. Prato, K. Song, C. Rostock, A. Loewer, J. Utikal, G. R. Lewin, S. G. Lechner, and J. Siemens. PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors. Nat. Neurosci. 18:10–16, 2015.

    Article  CAS  PubMed  Google Scholar 

  65. Seong, J., N. Wang, and Y. Wang. Mechanotransduction at focal adhesions: from physiology to cancer development. J. Cell Mol. Med. 17:597–604, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seppala, J., H. Tossavainen, N. Rodic, P. Permi, U. Pentikainen, and J. Ylanne. Flexible structure of peptide-bound filamin a mechanosensor domain pair 20-21. PLoS ONE 10:e0136969, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shao, M., F. Ning, J. Zhao, M. Wei, D. G. Evans, and X. Duan. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J. Am. Chem. Soc. 134:1071–1077, 2012.

    Article  CAS  PubMed  Google Scholar 

  68. Shen, J., F. W. Luscinskas, A. Connolly, C. F. Dewey, and M. A. Gimbrone. Fluid shear-stress modulates cytosolic free calcium in vascular endothelial-cells. Am. J. Physiol. 262:C384–C390, 1992.

    CAS  PubMed  Google Scholar 

  69. Shen, Y., C. Wu, T. Q. Uyeda, G. R. Plaza, B. Liu, Y. Han, M. S. Lesniak, and Y. Cheng. Elongated nanoparticle aggregates in cancer cells for mechanical destruction with low frequency rotating magnetic field. Theranostics 7:1735–1748, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Simi, A. K., A. S. Piotrowski, and C. M. Nelson. Mechanotransduction, metastasis and genomic instability: genomic instability and cancer metastasis. In: Mechanisms, emerging themes, and novel therapeutic strategies 20, edited by C. Maxwell, and C. Roskelley. Switzerland: Springer, 2015, pp. 139–158.

    Google Scholar 

  71. Smith, M. L., D. Gourdon, W. C. Little, K. E. Kubow, R. A. Eguiluz, S. Luna-Morris, and V. Vogel. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5:e268, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Son, B., H. D. Kim, M. Kim, J. A. Kim, J. Lee, H. Shin, N. S. Hwang, and T. H. Park. Physical stimuli-induced chondrogenic differentiation of mesenchymal stem cells using magnetic nanoparticles. Adv. Healthc. Mater. 4:1339–1347, 2015.

    Article  CAS  PubMed  Google Scholar 

  73. Souza, G. R., J. R. Molina, R. M. Raphael, M. G. Ozawa, D. J. Stark, C. S. Levin, L. F. Bronk, J. S. Ananta, J. Mandelin, M. Georgescu, J. A. Bankson, J. G. Gelovani, T. C. Killian, W. Arap, and R. Pasqualini. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5:291–296, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun, Y., K. M. A. Yong, L. G. Villa-Diaz, X. Zhang, W. Chen, R. Philson, S. Weng, H. Xu, P. H. Krebsbach, and J. Fu. Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat. Mater. 13:599–604, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3:413–438, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Swaminathan, V., K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71:5075–5080, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Swift, J., I. L. Ivanovska, A. Buxboim, T. Harada, P. C. D. P. Dingal, J. Pinter, J. D. Pajerowski, K. R. Spinler, J. Shin, M. Tewari, F. Rehfeldt, D. W. Speicher, and D. E. Discher. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Thomas, C. H., J. H. Collier, C. S. Sfeir, and K. E. Healy. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl. Acad. Sci. USA 99:1972–1977, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsimbouri, P. M. Adult stem cell responses to nanostimuli. J. Funct. Biomater. 6:598–622, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Uddin, S. M. Z., and Y. Qin. Enhancement of osteogenic differentiation and proliferation in human mesenchymal stem cells by a modified low intensity ultrasound stimulation under simulated microgravity. PLoS ONE 8:e73914, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Uyeda, T. Q. P., Y. Iwadate, N. Umeki, A. Nagasaki, and S. Yumura. Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLoS ONE 6:e26200, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vicente-Manzanares, M., X. Ma, R. S. Adelstein, and A. R. Horwitz. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10:778–790, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vogel, V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35:459–488, 2006.

    Article  CAS  PubMed  Google Scholar 

  84. Weaver, V., O. Petersen, F. Wang, C. Larabell, P. Briand, C. Damsky, and M. Bissell. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137:231–245, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Weinbaum, S., Y. Duan, M. M. Thi, and L. You. An integrative review of mechanotransduction in endothelial, epithelial (renal) and dendritic cells (osteocytes). Cell. Mol. Bioeng. 4:510–537, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wu, M., J. Fannin, K. M. Rice, B. Wang, and E. R. Blough. Effect of aging on cellular mechanotransduction. Ageing Res. Rev. 10:1–15, 2011.

    Article  PubMed  Google Scholar 

  87. Yonemura, S., Y. Wada, T. Watanabe, A. Nagafuchi, and M. Shibata. alpha-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12:533–542, 2010.

    Article  CAS  PubMed  Google Scholar 

  88. Yoshikawa, H. Y., T. Kawano, T. Matsuda, S. Kidoaki, and M. Tanaka. Morphology and adhesion strength of myoblast cells on photocurable gelatin under native and non-native micromechanical environments. J. Phys. Chem. B 117:4081–4088, 2013.

    Article  CAS  PubMed  Google Scholar 

  89. Zangwill, A. Modern electrodynamics. Cambridge: Cambridge Unicersity Press, 2013.

    Google Scholar 

  90. Zemel, A., F. Rehfeldt, A. E. X. Brown, D. E. Discher, and S. A. Safran. Optimal matrix rigidity for stress-fibre polarization in stem cells. Nat. Phys. 6:468–473, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, E., M. F. Kircher, M. Koch, L. Eliasson, S. N. Goldberg, and E. Renstrom. Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation. ACS Nano 8:3192–3201, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

YC thanks the National Science Foundation of China (No. 81571803) the Thousand Talents Plan and Shanghai Pujiang Program (No. 15PJ1407800) for support. GRP and TQPU received a team grant from The Program of High-end Foreign Experts of the State Administration of Foreign Experts Affairs, China. GRP received support from the Ministerio de Economía y Competitividad, Spain, througth the project MAT2016-76847-R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Cheng or Gustavo R. Plaza.

Additional information

Associate Editor James J Moon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Cheng, Y., Uyeda, T.Q.P. et al. Cell Mechanosensors and the Possibilities of Using Magnetic Nanoparticles to Study Them and to Modify Cell Fate. Ann Biomed Eng 45, 2475–2486 (2017). https://doi.org/10.1007/s10439-017-1884-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1884-7

Keywords

Navigation