Skip to main content

How Physics Can Regulate Stem Cells’ Fate: An Overview on Cellular Interactions with Their Substrate

  • Chapter
  • First Online:
Engineering Materials for Stem Cell Regeneration

Abstract

Despite astounding developments in regenerative medicine, efficient cell differentiation has still met some struggles in conventional methods. Since mechanical ques are responsible for the communications between stem cells and their niche, advanced tissue engineering has introduced the novel branch of mechanobiology to manipulate organogenesis. Taking advantage of unique topographical microenvironment and physiochemical features, nanomaterials provide the opportunity to control cellular functions through multidimensional approaches. An overview of mechanobiology science reveals an interface of the disparate scientific disciplines from biology to mechanics. Accordingly, mathematical modeling is instrumental in the explosive progress of this area, assisting experimental studies on myriad levels. This chapter is inspired to generate discussions in mechanobiology from the fundamental conceptions to the cutting-edge developments. Moreover, the role of various biomaterials, magnetic nanoparticles, and conductive segments are examined, besides their relative physio-mechanical computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abagnale G et al (2017) Surface topography guides morphology and spatial patterning of induced pluripotent stem cell colonies. Stem Cell Rep 9(2):654–666

    Article  CAS  Google Scholar 

  • Abdollahiyan P, Oroojalian F, Hejazi M, Guardia M, Mokhtarzadeh A (2021) Nanotechnology, and scaffold implantation for the effective repair of injured organs: an overview on hard tissue engineering. J Control Release 333:391–417

    Google Scholar 

  • Abercrombie M, Heaysman JEM, Pegrum SM (1971) The locomotion of fibroblasts in culture: IV. Electron microscopy of the leading lamella. Exp Cell Res 67(2):359–367

    Article  CAS  PubMed  Google Scholar 

  • Adamopoulos C et al (2017) Recent advances in mechanobiology of osteosarcoma. J Cell Biochem 118(2):232–236

    Article  CAS  PubMed  Google Scholar 

  • Adebayo MF et al (2019) Investigating the role of microenvironment and matrix stiffness in ovarian cancer development. University of Newcastle, Callaghan, NSW

    Google Scholar 

  • Ahadian S et al (2016) Graphene induces spontaneous cardiac differentiation in embryoid bodies. Nanoscale 8(13):7075–7084

    Article  CAS  PubMed  Google Scholar 

  • Ammar A et al (2016) Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes. Arab J Chem 9(2):274–286

    Article  CAS  Google Scholar 

  • Ando T (2018) High-speed atomic force microscopy and its future prospects. Biophys Rev 10(2):285–292

    Article  CAS  PubMed  Google Scholar 

  • Argentati C et al (2019) Insight into Mechanobiology: how stem cells feel mechanical forces and orchestrate biological functions. Int J Mol Sci 20(21):5337

    Article  CAS  PubMed Central  Google Scholar 

  • Ariga K et al (2016) What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polym J 48(4):371–389

    Article  CAS  Google Scholar 

  • Balaban NQ et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472

    Article  CAS  PubMed  Google Scholar 

  • Bashirzadeh Y et al (2018) Stiffness measurement of soft silicone substrates for mechanobiology studies using a widefield fluorescence microscope. JoVE (137):e57797

    Google Scholar 

  • Beil M et al (2003) Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat Cell Biol 5(9):803–811

    Article  CAS  PubMed  Google Scholar 

  • Benayahu D, Wiesenfeld Y, Sapir-Koren R (2019) How is mechanobiology involved in mesenchymal stem cell differentiation toward the osteoblastic or adipogenic fate? J Cell Physiol 234(8):12133–12141

    Article  CAS  PubMed  Google Scholar 

  • Bergert M et al (2016) Confocal reference free traction force microscopy. Nat Commun 7:12814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18(5):472–481

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj G, Webster TJ (2017) Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO2 surface treatment. Int J Nanomedicine 12:363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnemay L et al (2013) Engineering spatial gradients of signaling proteins using magnetic nanoparticles. Nano Lett 13(11):5147–5152

    Article  CAS  PubMed  Google Scholar 

  • Bouzid T et al (2019) The LINC complex, mechanotransduction, and mesenchymal stem cell function and fate. J Biol Eng 13:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Brezulier D et al (2018) Bone mechanobiology, an emerging field: a review. Orthod Fr 89(4):343–353

    PubMed  Google Scholar 

  • Burridge K, Connell L (1983) Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin-membrane interaction. Cell Motil 3(5–6):405–417

    Article  CAS  PubMed  Google Scholar 

  • Caluori G et al (2019) Simultaneous study of mechanobiology and calcium dynamics on hESC-derived cardiomyocytes clusters. J Mol Recognit 32(2):e2760

    Article  PubMed  CAS  Google Scholar 

  • Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11(4):237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Desai TA (2020) TiO2-based nanotopographical cues attenuate the restenotic phenotype in primary human vascular endothelial and smooth muscle cells. ACS Biomater Sci Eng 6(2):923–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo AB, Jacobs CR (2010) Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep 8(2):98–104

    Article  PubMed  Google Scholar 

  • Changede R, Sheetz M (2017) Integrin and cadherin clusters: a robust way to organize adhesions for cell mechanics. Bioessays 39(1):e201600123

    Article  CAS  Google Scholar 

  • Chen GY et al (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2):418–427

    Article  PubMed  CAS  Google Scholar 

  • Chen W et al (2014) Nanotopographical surfaces for stem cell fate control: engineering mechanobiology from the bottom. Nano Today 9(6):759–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Chuang Y-C et al (2019) Regulating substrate mechanics to achieve odontogenic differentiation for dental pulp stem cells on TiO2 filled and unfilled polyisoprene. Acta Biomater 89:60–72

    Article  CAS  PubMed  Google Scholar 

  • Coussen F et al (2002) Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation. J Cell Sci 115(Pt 12):2581–2590

    Article  CAS  PubMed  Google Scholar 

  • Crowder SW et al (2013) Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5(10):4171–4176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dado D, Levenberg S (2009) Cell–scaffold mechanical interplay within engineered tissue. Semin Cell Dev Biol 20(6):656–664

    Article  CAS  PubMed  Google Scholar 

  • Denisin AK, Pruitt BL (2016) Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Appl Mater Interfaces 8(34):21893–21902

    Article  CAS  PubMed  Google Scholar 

  • Douguet D et al (2019) Piezo ion channels in cardiovascular mechanobiology. Trends Pharmacol Sci 40(12):956–970

    Article  CAS  PubMed  Google Scholar 

  • Dulak J et al (2015) Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochim Pol 62(3):329–337

    Article  CAS  PubMed  Google Scholar 

  • Earls JK, Jin S, Ye K (2013) Mechanobiology of human pluripotent stem cells. Tissue Eng Part B Rev 19(5):420–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott MH et al (2015) Caveolae and conventional outflow: proteomic profiling of outflow tissue caveolae and evidence of mechanosensing. Invest Ophthalmol Vis Sci 56(7):3256–3256

    Google Scholar 

  • Elosegui-Artola A et al (2016) Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol 18(5):540–548

    Article  CAS  PubMed  Google Scholar 

  • Evans ND et al (2013) Epithelial mechanobiology, skin wound healing, and the stem cell niche. J Mech Behav Biomed Mater 28:397–409

    Article  PubMed  Google Scholar 

  • Eweje F, Ardona HAM (2019) Quantifying the effects of engineered nanomaterials on endothelial cell architecture and vascular barrier integrity using a cell pair model. Nanoscale 11(38):17878–17893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyckmans J, Boudou T, Yu X, Chen CS (2011) A hitchhiker’s guide to mechanobiology. Dev Cell 21(1):35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z et al (2014) The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts. Biomaterials 35(28):8078–8091

    Article  CAS  PubMed  Google Scholar 

  • Friedl P, Mayor R (2017) Tuning collective cell migration by cell-cell junction regulation. Cold Spring Harb Perspect Biol 9(4):a029199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu WB, Wang WE, Zeng CY (2019) Wnt signaling pathways in myocardial infarction and the therapeutic effects of Wnt pathway inhibitors. Acta Pharmacol Sin 40(1):9–12

    Article  CAS  PubMed  Google Scholar 

  • Gauthier NC et al (2011) Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. Proc Natl Acad Sci U S A 108(35):14467–14472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgiou CD (2019) The molecular biology of the elites is replaced by an environmentally interactive biology of social equality. Critique 47(1):89–121

    Article  Google Scholar 

  • Ghassemi S et al (2012) Cells test substrate rigidity by local contractions on submicrometer pillars. Proc Natl Acad Sci U S A 109(14):5328–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giménez A et al (2017) Elastic properties of hydrogels and decellularized tissue sections used in mechanobiology studies probed by atomic force microscopy. Microsc Res Tech 80(1):85–96

    Article  PubMed  CAS  Google Scholar 

  • Grashoff C et al (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466(7303):263–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta K et al (2018) Bile canaliculi contract autonomously by releasing calcium into hepatocytes via mechanosensitive calcium channel. In: bioRxiv, p 449512

    Google Scholar 

  • Hao J et al (2015) Mechanobiology of mesenchymal stem cells: perspective into mechanical induction of MSC fate. Acta Biomater 20:1–9

    Article  PubMed  Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440):177–179

    Article  CAS  PubMed  Google Scholar 

  • Harrison DL, Fang Y, Huang J (2019) T-cell mechanobiology: force sensation, potentiation, and translation. Front Physiol 7:45

    Article  Google Scholar 

  • Hayakawa K, Sato N, Obinata T (2001) Dynamic reorientation of cultured cells and stress fibers under mechanical stress from periodic stretching. Exp Cell Res 268(1):104–114

    Article  CAS  PubMed  Google Scholar 

  • Hou SZ et al (2011) Role of the interaction between puerarin and the erythrocyte membrane in puerarin-induced hemolysis. Chem Biol Interact 192(3):184–192

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Dobson J, El Haj AJ (2014) Control of smooth muscle α-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation. Nanomedicine 10(1):45–55

    Article  CAS  PubMed  Google Scholar 

  • Huang AH, Farrell MJ, Mauck RL (2010) Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. J Biomech 43(1):128–136

    Article  PubMed  Google Scholar 

  • Huebsch N (2019) Translational mechanobiology: designing synthetic hydrogel matrices for improved in vitro models and cell-based therapies. Acta Biomater 94:97–111

    Article  CAS  PubMed  Google Scholar 

  • Hughes JH, Kumar S (2016) Synthetic mechanobiology: engineering cellular force generation and signaling. Curr Opin Biotechnol 40:82–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hur SS et al (2020) Traction force microscopy for understanding cellular mechanotransduction. BMB Rep 53(2):74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huselstein C et al (2017) Mechanobiology of mesenchymal stem cells: which interest for cell-based treatment? Biomed Mater Eng 28(s1):S47–s56

    PubMed  Google Scholar 

  • Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173(4412):973–976

    Article  CAS  PubMed  Google Scholar 

  • Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 173(4412):971–973

    Article  CAS  PubMed  Google Scholar 

  • Iskratsch T et al (2013) FHOD1 is needed for directed forces and adhesion maturation during cell spreading and migration. Dev Cell 27(5):545–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iskratsch T, Wolfenson H, Sheetz MP (2014) Appreciating force and shape-the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol 15(12):825–833

    Article  CAS  PubMed  Google Scholar 

  • Issa B et al (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14(11):21266–21305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izzard CS, Lochner LR (1976) Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J Cell Sci 21(1):129–159

    Article  CAS  PubMed  Google Scholar 

  • Jegou A, Carlier MF, Romet-Lemonne G (2013) Formin mDia1 senses and generates mechanical forces on actin filaments. Nat Commun 4:1883

    Article  PubMed  CAS  Google Scholar 

  • Kang PH, Kumar S, Schaffer DV (2017) Novel biomaterials to study neural stem cell mechanobiology and improve cell-replacement therapies. Curr Opin Biomed Eng 4:13–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy KM, Bhaw-Luximon A, Jhurry D (2017) Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: implications for scaffold design and performance. Acta Biomater 50:41–55

    Article  CAS  PubMed  Google Scholar 

  • Kim DH et al (2009) Microengineered platforms for cell mechanobiology. Annu Rev Biomed Eng 11:203–233

    Article  CAS  PubMed  Google Scholar 

  • Kim T-H et al (2015) Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano 9(4):3780–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klosterhoff BS et al (2017) Chapter 5. Material and mechanobiological considerations for bone regeneration. In: Bose S, Bandyopadhyay A (eds) Materials for bone disorders. Academic Press, San Diego, CA, pp 197–264

    Chapter  Google Scholar 

  • Kolega J (1986) Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J Cell Biol 102(4):1400–1411

    Article  CAS  PubMed  Google Scholar 

  • Kuo Y-C, Hung S-C, Hsu S-h (2014) The effect of elastic biodegradable polyurethane electrospun nanofibers on the differentiation of mesenchymal stem cells. Colloids Surf B Biointerfaces 122:414–422

    Article  CAS  PubMed  Google Scholar 

  • Lachner-Piza D et al (2019) Automatic detection of high-frequency-oscillations and their sub-groups co-occurring with interictal-epileptic-spikes. J Neural Eng 17:016030

    Article  Google Scholar 

  • Ladoux B, Mege RM (2017) Mechanobiology of collective cell behaviours. Nat Rev Mol Cell Biol 18(12):743–757

    Article  CAS  PubMed  Google Scholar 

  • Ladoux B, Mège R-M, Trepat X (2016) Front–rear polarization by mechanical cues: from single cells to tissues. Trends Cell Biol 26(6):420–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DA et al (2011) Stem cell mechanobiology. J Cell Biochem 112(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H et al (2019) Role of nuclear mechanosensitivity in determining cellular responses to forces and biomaterials. Biomaterials 197:60–71

    Article  CAS  PubMed  Google Scholar 

  • Legant WR et al (2010) Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat Methods 7:969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerebours C et al (2016) A multiscale mechanobiological model of bone remodelling predicts site-specific bone loss in the femur during osteoporosis and mechanical disuse. Biomech Model Mechanobiol 15(1):43–67

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2016) Current investigations into magnetic nanoparticles for biomedical applications. J Biomed Mater Res A 104(5):1285–1296

    Article  CAS  PubMed  Google Scholar 

  • Li L, Eyckmans J, Chen CS (2017) Designer biomaterials for mechanobiology. Nat Mater 16(12):1164–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2013) Tension sensing nanoparticles for mechano-imaging at the living/nonliving interface. J Am Chem Soc 135(14):5320–5323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2016) Single-layer graphene enhances the osteogenic differentiation of human mesenchymal stem cells in vitro and in vivo. J Biomed Nanotechnol 12(6):1270–1284

    Article  CAS  PubMed  Google Scholar 

  • Liu M et al (2018) Carboxylated graphene oxide promoted axonal guidance growth by activating Netrin-1/deleted in colorectal cancer signaling in rat primary cultured cortical neurons. J Biomed Mater Res A 106(6):1500–1510

    Article  CAS  PubMed  Google Scholar 

  • Lv M et al (2018) Calcium signaling of in situ chondrocytes in articular cartilage under compressive loading: roles of calcium sources and cell membrane ion channels. J Orthop Res 36(2):730–738

    Article  CAS  PubMed  Google Scholar 

  • Lynch CD et al (2013) Endoplasmic spreading requires coalescence of vimentin intermediate filaments at force-bearing adhesions. Mol Biol Cell 24(1):21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch ME et al (2020) Chapter 1.4—The role of mechanobiology in cancer metastasis. In: Niebur GL (ed) Mechanobiology. Elsevier, Amsterdam, pp 65–78

    Chapter  Google Scholar 

  • MacQueen L, Sun Y, Simmons CA (2013) Mesenchymal stem cell mechanobiology and emerging experimental platforms. J R Soc Interface 10(84):20130179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahmood M et al (2011) Enhanced bone cells growth and proliferation on TiO2 nanotubular substrates treated by RF plasma discharge. Adv Eng Mater 13(3):B95–B101

    Article  CAS  Google Scholar 

  • Mahmoudifard M et al (2016) The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets. Biomed Mater 11(2):025006

    Article  PubMed  CAS  Google Scholar 

  • Malandrino A, Kamm RD, Moeendarbary E (2018) In vitro modeling of mechanics in cancer metastasis. ACS Biomater Sci Eng 4(2):294–301

    Article  CAS  PubMed  Google Scholar 

  • Margadant F et al (2011) Mechanotransduction in vivo by repeated Talin stretch-relaxation events depends upon vinculin. PLoS Biol 9(12):e1001223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkel R et al (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397(6714):50–53

    Article  CAS  PubMed  Google Scholar 

  • Micoulet A, Spatz JP, Ott A (2005) Mechanical response analysis and power generation by single-cell stretching. ChemPhysChem 6(4):663–670

    Article  CAS  PubMed  Google Scholar 

  • Miroshnikova YA et al (2016) Tissue mechanics promote IDH1-dependent HIF1alpha-tenascin C feedback to regulate glioblastoma aggression. Nat Cell Biol 18(12):1336–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzaei E et al (2016) The differentiation of human endometrial stem cells into neuron-like cells on electrospun PAN-derived carbon nanofibers with random and aligned topographies. Mol Neurobiol 53(7):4798–4808

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RS et al (2007) Chapter 13, box on morphology of adenocarcinoma. In: Robbins basic pathology, 8th edn. Saunders, Philadelphia

    Google Scholar 

  • Mohammed D et al (2019) Innovative tools for mechanobiology: unraveling outside-in and inside-out mechanotransduction. Front Bioeng Biotechnol 7:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Monzel C et al (2017) Magnetic control of cellular processes using biofunctional nanoparticles. Chem Sci 8(11):7330–7338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mousavi SJ, Doweidar MH (2015) Role of mechanical cues in cell differentiation and proliferation: a 3D numerical model. PLoS One 10(5):e0124529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mulligan JA et al (2018) Traction force microscopy for noninvasive imaging of cell forces. Adv Exp Med Biol 1092:319–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrell M et al (2015) Forcing cells into shape: the mechanics of actomyosin contractility. Nat Rev Mol Cell Biol 16(8):486–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najafi MF et al (2013) Which form of collagen is suitable for nerve cell culture? Neural Regen Res 8(23):2165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng JL et al (2017) Establishing the basis for mechanobiology-based physical therapy protocols to potentiate cellular healing and tissue regeneration. Front Physiol 8:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen AT, Sathe SR, Yim EKF (2016) From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance. J Phys Condens Matter 28(18):183001

    Article  PubMed  CAS  Google Scholar 

  • Niu Y et al (2018) Enhancing neural differentiation of induced pluripotent stem cells by conductive graphene/silk fibroin films. J Biomed Mater Res A 106(11):2973–2983

    Article  CAS  PubMed  Google Scholar 

  • Nowlan NC et al (2010) Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defects Res C Embryo Today 90(3):203–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto M (2019) 2—The role of scaffolds in tissue engineering. In: Mozafari M, Sefat F, Atala A (eds) Handbook of tissue engineering scaffolds, vol 1. Woodhead Publishing, Cambridge, pp 23–49

    Chapter  Google Scholar 

  • Oliver T, Dembo M, Jacobson K (1995) Traction forces in locomoting cells. Cell Motil Cytoskeleton 31(3):225–240

    Article  CAS  PubMed  Google Scholar 

  • Palmieri M et al (2011) Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 20(19):3852–3866

    Article  CAS  PubMed  Google Scholar 

  • Pang S et al (2019) Bioadaptive nanorod array topography of hydroxyapatite and TiO2 on Ti substrate to preosteoblast cell behaviors. J Biomed Mater Res A 107(10):2272–2281

    Article  CAS  PubMed  Google Scholar 

  • Park J et al (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7(6):1686–1691

    Article  CAS  PubMed  Google Scholar 

  • Park J et al (2014) Graphene–regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv Healthc Mater 3(2):176–181

    Article  CAS  PubMed  Google Scholar 

  • Pelham RJ Jr, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94(25):13661–13665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polacheck WJ, Chen CS (2016) Measuring cell-generated forces: a guide to the available tools. Nat Methods 13(5):415–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    Article  CAS  PubMed  Google Scholar 

  • Qavamnia SS, Nasouri K (2015) Conductive polyacrylonitrile/polyaniline nanofibers prepared by electrospinning process. Polym Sci Ser A 57(3):343–349

    Article  CAS  Google Scholar 

  • Qin Z et al (2017) The mechanics and design of a lightweight three-dimensional graphene assembly. Sci Adv 3:e1601536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahmouni S et al (2013) Hydrogel micropillars with integrin selective peptidomimetic functionalized nanopatterned tops: a new tool for the measurement of cell traction forces transmitted through alphavbeta3- or alpha5beta1-integrins. Adv Mater 25(41):5869–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raja G et al (2020) Mechanoregulation of titanium dioxide nanoparticles in cancer therapy. Mater Sci Eng C 107:110303

    Article  CAS  Google Scholar 

  • Rana P et al (2012) Characterization of human-induced pluripotent stem cell-derived cardiomyocytes: bioenergetics and utilization in safety screening. Toxicol Sci 130(1):117–131

    Article  CAS  PubMed  Google Scholar 

  • Rana D et al (2016) Control of stem cell fate and function by polymer nanofibers. J Nanosci Nanotechnol 16(9):9015–9021

    Article  CAS  Google Scholar 

  • Ravasio A et al (2015) Regulation of epithelial cell organization by tuning cell-substrate adhesion. Integr Biol (Camb) 7(10):1228–1241

    Article  CAS  Google Scholar 

  • Reilly GC, Engler AJ (2010) Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 43(1):55–62

    Article  PubMed  Google Scholar 

  • Rief M et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112

    Article  CAS  PubMed  Google Scholar 

  • Riveline D et al (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153(6):1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roca-Cusachs P, Conte V (2017) Quantifying forces in cell biology. Nat Cell Biol 19(7):742–751

    Article  CAS  PubMed  Google Scholar 

  • Roca-Cusachs P et al (2013) Integrin-dependent force transmission to the extracellular matrix by alpha-actinin triggers adhesion maturation. Proc Natl Acad Sci U S A 110(15):E1361–E1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotherham M, El Haj AJ (2015) Remote activation of the Wnt/β-catenin signalling pathway using functionalised magnetic particles. PLoS One 10(3):e0121761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanford KK, Likely GD, Earle WR (1954) The development of variations in transplantability and morphology within a clone of mouse fibroblasts transformed to sarcoma-producing cells in vitro. J Natl Cancer Inst 15(2):215–237

    CAS  PubMed  Google Scholar 

  • Sarangi BR et al (2017) Coordination between intra- and extracellular forces regulates focal adhesion dynamics. Nano Lett 17(1):399–406

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y et al (2006) Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127(5):1015–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena M et al (2017) EGFR and HER2 activate rigidity sensing only on rigid matrices. Nat Mater 16(7):775–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schorb M et al (2017) New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography. J Struct Biol 197(2):83–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze N et al (2014) FHOD1 regulates stress fiber organization by controlling the dynamics of transverse arcs and dorsal fibers. J Cell Sci 127(Pt 7):1379–1393

    CAS  PubMed  Google Scholar 

  • Schwarz US (2017) Mechanobiology by the numbers: a close relationship between biology and physics. Nat Rev Mol Cell Biol 18(12):711–712

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Sang J, Fu J (2015) On human pluripotent stem cell control: the rise of 3D bioengineering and mechanobiology. Biomaterials 52:26–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A 71(11):4457–4461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y et al (2017) Cell mechanosensors and the possibilities of using magnetic nanoparticles to study them and to modify cell fate. Ann Biomed Eng 45(10):2475–2486

    Article  PubMed  Google Scholar 

  • Shin JW et al (2013) Mechanobiology of bone marrow stem cells: from myosin-II forces to compliance of matrix and nucleus in cell forms and fates. Differentiation 86(3):77–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivashankar GV (2019) Mechanical regulation of genome architecture and cell-fate decisions. Curr Opin Cell Biol 56:115–121

    Article  CAS  PubMed  Google Scholar 

  • Shivashankar GV, Sheetz M, Matsudaira P (2015) Mechanobiology. Integr Biol (Camb) 7(10):1091–1092

    Article  CAS  Google Scholar 

  • Sigaut L, von Bilderling C (2018) Live cell imaging reveals focal adhesions mechanoresponses in mammary epithelial cells under sustained equibiaxial stress. Sci Rep 8(1):9788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sisakhtnezhad S, Alimoradi E, Akrami H (2017) External factors influencing mesenchymal stem cell fate in vitro. Eur J Cell Biol 96(1):13–33

    Article  CAS  PubMed  Google Scholar 

  • Sladitschek HL, Neveu PA (2017) Integrated experimental and theoretical studies of stem cells. Curr Stem Cell Rep 3(3):248–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Z et al (2017) Mechanosensing in liver regeneration. Semin Cell Dev Biol 71:153–167

    Article  CAS  PubMed  Google Scholar 

  • Spudich JA (2001) The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol 2(5):387–392

    Article  CAS  PubMed  Google Scholar 

  • Sridhar S et al (2015) Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf B Biointerfaces 134:346–354

    Article  CAS  PubMed  Google Scholar 

  • Steinwachs J et al (2016) Three-dimensional force microscopy of cells in biopolymer networks. Nat Methods 13(2):171–176

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Sethuraman S (2016) Nanofibers design for guided cellular behavior. In: Biomaterials and nanotechnology for tissue engineering. CRC, Boca Raton, FL, pp 35–50

    Google Scholar 

  • Sugimura K, Lenne PF, Graner F (2016) Measuring forces and stresses in situ in living tissues. Development 143(2):186–196

    Article  CAS  PubMed  Google Scholar 

  • Sunyer R et al (2016) Collective cell durotaxis emerges from long-range intercellular force transmission. Science 353(6304):1157–1161

    Article  CAS  PubMed  Google Scholar 

  • Tajik A et al (2016) Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater 15(12):1287–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K et al (2019) L-type calcium channel modulates mechanosensitivity of the cardiomyocyte cell line H9c2. Cell Calcium 79:68–74

    Article  CAS  PubMed  Google Scholar 

  • Tan JL et al (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100(4):1484–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y et al (2012) Probing the mechanobiological properties of human embryonic stem cells in cardiac differentiation by optical tweezers. J Biomech 45(1):123–128

    Article  PubMed  Google Scholar 

  • Tay A, Schweizer FE, Di Carlo D (2016) Micro- and nano-technologies to probe the mechano-biology of the brain. Lab Chip 16(11):1962–1977

    Article  CAS  PubMed  Google Scholar 

  • Temin HM, Rubin H (1958) Characteristics of an assay for Rous sarcoma virus and Rous sarcoma cells in tissue culture. Virology 6(3):669–688

    Article  CAS  PubMed  Google Scholar 

  • Thompson DAW (1917) On growth and form. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Uto K et al (2017) Dynamically tunable cell culture platforms for tissue engineering and mechanobiology. Prog Polym Sci 65:53–82

    Article  CAS  PubMed  Google Scholar 

  • Van de Walle A et al (2019) Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells. Proc Natl Acad Sci U S A 116(10):4044–4053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vining KH, Mooney DJ (2017) Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol 18(12):728–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Wichert G et al (2003) RPTP-alpha acts as a transducer of mechanical force on alphav/beta3-integrin-cytoskeleton linkages. J Cell Biol 161(1):143–153

    Article  CAS  Google Scholar 

  • Wall M et al (2018) Key developments that impacted the field of mechanobiology and mechanotransduction. J Orthop Res 36(2):605–619

    PubMed  Google Scholar 

  • Wang JHC, Thampatty BP (2008) Chapter 7. Mechanobiology of adult and stem cells. Int Rev Cell Mol Biol 271:301–346

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang L, Fan Y (2016a) Adverse biological effect of TiO2 and hydroxyapatite nanoparticles used in bone repair and replacement. Int J Mol Sci 17(6):798

    Article  PubMed Central  CAS  Google Scholar 

  • Wang Q et al (2016b) Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials 86:11–20

    Article  CAS  PubMed  Google Scholar 

  • Wingate K et al (2012) Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers. Acta Biomater 8(4):1440–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong DSH et al (2017) Magnetically tuning tether mobility of integrin ligand regulates adhesion, spreading, and differentiation of stem cells. Nano Lett 17(3):1685–1695

    Article  CAS  PubMed  Google Scholar 

  • Wu C et al (2018) Recent advances in magnetic-nanomaterial-based mechanotransduction for cell fate regulation. Adv Mater 30(17):1705673

    Article  CAS  Google Scholar 

  • Xia S et al (2019) Nanoscale architecture of the cortical actin cytoskeleton in embryonic stem cells. Cell Rep 28(5):1251–1267.e7

    Article  CAS  PubMed  Google Scholar 

  • Xu Y et al (2010) Filamin a regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. J Exp Med 207(11):2421–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J, Wu T, Xia Y (2018) Perspective: aligned arrays of electrospun nanofibers for directing cell migration. APL Mater 6(12):120902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan J, Fei C (2019) Mechanical instability and interfacial energy drive biofilm morphogenesis. Elife 8:e43920

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang W, Meyers MA, Ritchie RO (2019) Structural architectures with toughening mechanisms in nature: a review of the materials science of type-I collagenous materials. Prog Mater Sci 103:425–483

    Article  Google Scholar 

  • Yonemura S et al (2010) Alpha-catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12(6):533–542

    Article  CAS  PubMed  Google Scholar 

  • Yoo J et al (2014) Cell reprogramming into the pluripotent state using graphene based substrates. Biomaterials 35(29):8321–8329

    Article  CAS  PubMed  Google Scholar 

  • Zhang T et al (2016) Enhanced proliferation and osteogenic differentiation of human mesenchymal stem cells on biomineralized three-dimensional graphene foams. Carbon 105:233–243

    Article  CAS  Google Scholar 

  • Zhang X et al (2020) A functionalized Sm/Sr doped TiO2 nanotube array on titanium implant enables exceptional bone-implant integration and also self-antibacterial activity. Ceram Int 46:14796–14807

    Article  CAS  Google Scholar 

  • Zhao R et al (2013) Decoupling cell and matrix mechanics in engineered microtissues using magnetically actuated microcantilevers. Adv Mater 25(12):1699–1705

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q et al (2017) Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem Rev 117(15):10121–10211

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y et al (2019) Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling. FASEB J 33(4):4675–4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahad Mokhtarzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdollahiyan, P., Oroojalian, F., Mokhtarzadeh, A. (2021). How Physics Can Regulate Stem Cells’ Fate: An Overview on Cellular Interactions with Their Substrate. In: Sheikh, F.A. (eds) Engineering Materials for Stem Cell Regeneration. Springer, Singapore. https://doi.org/10.1007/978-981-16-4420-7_5

Download citation

Publish with us

Policies and ethics