Skip to main content
Log in

Changes in Small Intestine Tissue Compressed by a Linear Stapler Based on Cole Y Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Clarifying changes in gastrointestinal tissue compressed by surgical stapler is a crucial prerequisite for stapler design optimization. For this study, a stapler was modified, and multifrequency bioimpedance of a porcine small intestine tissue compressed by the stapler was measured. The Cole Y model was fitted to the bioimpedance, and changes in tissue were analyzed using model parameters: G 0, extracellular fluid conductance; ΔG, intracellular fluid conductance; C cpeF, equivalent capacitance of cell membrane. The changes could be divided into two stages: first, all parameters decreased sharply with slopes more than 15.70 ± 2.67, 4.25 ± 1.23 μS/s and 72.68 ± 6.99 pF/s respectively; and subsequently, with an increase in compression strength, G 0 decreased with slopes less than 2.54 ± 0.40 μS/s, ΔG decreased slightly with slope of 0.26 ± 0.04 μS/s after fluctuating mildly, and C cpeF remained nearly invariant after initially increasing with slope of −2.94 ± 0.64 pF/s. In conclusion, when the stapler is closed, a portion of tissue is squeezed out of the measurement space, causing all parameters’ sharp decrease. Subsequently, the stapler continues compressing the tissue, leading to extracellular fluid expulsion. The changes in intracellular fluid are related to the compression strength and may be explained by cell restoration. This study could provide a basis for stapler design optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ayllon D., F. Seoane, and R. Gil-Pita. Cole equation and parameter estimation from electrical bioimpedance spectroscopy measurements—a comparative study. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3779–3782, 2009

  2. Baker, R. S., J. Foote, P. Kemmeter, R. Brady, T. Vroegop, and M. Serveld. The science of stapling and leaks. Obes. Surg. 14:1290–1298, 2004.

    Article  PubMed  Google Scholar 

  3. Chung, R. S. Blood flow in colonic anastomoses. Effect of stapling and suturing. Ann. Surg. 206:335–339, 1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chung, R. S., D. C. Hitch, and D. N. Armstrong. The role of tissue ischemia in the pathogenesis of anastomotic stricture. Surgery 104:824–829, 1988.

    CAS  PubMed  Google Scholar 

  5. Covidien. Instructions for Use: Surgical AutoSuture Versafires GIA Single-Use Stapler and Endo GIA Single-Use Loading Units. Norwalk, CT: United States Surgical Corporation

  6. De Lorenzo, A., A. Andreoli, J. Matthie, and P. Withers. Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J. Appl. Physiol. 82(5):1542–1558, 1997.

    PubMed  Google Scholar 

  7. Dodde, R. E., J. L. Bull, and A. J. Shih. Bioimpedance of soft tissue under compression. Physiol. Meas. 33:1095–1109, 2012.

    Article  CAS  PubMed  Google Scholar 

  8. Ethicon. Essential Product Information. Endopath® ETS Endoscopic Linear Cutters/Staplers. Cincinatti, OH: Ethicon Endo-Surgery Inc, pp. 1–5, 2002

  9. Gonzalez-Correa, C. A., B. H. Brown, R. H. Smallwood, D. C. Walker, and K. D. Bardhan. Electrical bioimpedance readings increase with higher pressure applied to the measuring probe. Physiol. Meas. 26:S39–S47, 2005.

    Article  CAS  PubMed  Google Scholar 

  10. Gudivaka, R., D. A. Schoeller, R. F. Kushner, and M. J. Bolt. Single- and multifrequency models for bioelectrical impedance analysis of body water compartments. J. Appl. Physiol. 87:1087–1096, 1999.

    CAS  PubMed  Google Scholar 

  11. Ishibashi, K., and S. Sasaki. Aquaporin water channels in mammals. Clin. Exp. Nephrol. 13:247–253, 2009.

    Article  CAS  Google Scholar 

  12. Kawada, K., S. Hasegawa, K. Hida, K. Hirai, K. Okoshi, A. Nomura, J. Kawamura, S. Nagayama, and Y. Sakai. Risk factors for anastomotic leakage after laparoscopic low anterior resection with DST anastomosis. Surg. Endosc. 28:2988–2995, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Korolija, D. The current evidence on stapled versus hand-sewn anastomoses in the digestive tract. Minim. Invasive Ther. Allied Technol. 17:151–154, 2008.

    Article  PubMed  Google Scholar 

  14. Liu, B. W., Y. Liu, J. R. Liu, and Z. X. Feng. Comparison of hand-sewn and stapled anastomoses in surgeries of gastrointestinal tumors based on clinical practice of China. World. J. Surg. Oncol. 12:292, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Martinsen, O. G., and S. Grimnes. Bioimpedance and Bioelectricity Basics. Cambridge, MA: Academic Press, pp. 29–221, 2000

  16. McGuire, J., I. C. Wright, and J. N. Leverment. An in vitro assessment of tissue compression damage during circular stapler approximation tests, measuring expulsion of intracellular fluid and force. Proc. Inst. Mech. Eng. H 215:589–597, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Morita, K., N. Maeda, T. Kawaoka, S. Hiraki, A. Kudo, S. Fukuda, and M. Oka. Effects of the time interval between clamping and linear stapling for resection of porcine small intestine. Surg. Endosc. 22:750–756, 2008.

    Article  CAS  PubMed  Google Scholar 

  18. Myers, S. R., W. S. Rothermel, Jr, and L. Shaffer. The effect of tissue compression on circular stapler line failure. Surg. Endosc. 25:3043–3049, 2011.

    Article  PubMed  Google Scholar 

  19. Nakayama, S., S. Hasegawa, K. Hida, K. Kawada, and Y. Sakai. Obtaining secure stapling of a double stapling anastomosis. J. Surg. Res. 193:652–657, 2015.

    Article  PubMed  Google Scholar 

  20. Nakayama, S., S. Hasegawa, S. Nagayama, S. Kato, K. Hida, E. Tanaka, A. Itami, H. Kubo, and Y. Sakai. The importance of precompression time for secure stapling with a linear stapler. Surg. Endosc. 25:2382–2386, 2011.

    Article  PubMed  Google Scholar 

  21. Pena A., M. Bolton, and J. Pickard. Cellular poroelasticity: a theoretical model for soft tissue mechanics. In: Poromechanics: Proceedings of the 1st Biot conference. Boca Raton: CRC Press, 1998, p. 475.

  22. Rawlins, L., M. P. Rawlins, and D. Teel, 2nd. Human tissue thickness measurements from excised sleeve gastrectomy specimens. Surg. Endosc. 28:811–814, 2014.

    Article  PubMed  Google Scholar 

  23. Seoane F., R. Buendia, and R. Gil-Pita. Cole parameter estimation from electrical bioconductance spectroscopy measurements. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3495–3498, 2010

  24. van Marken Lichtenbelt, W. D., K. R. Westerterp, L. Wouters, and S. C. Luijendijk. Validation of bioelectrical-impedance measurements as a method to estimate body-water compartments. Am. J. Clin. Nutr. 60:159–166, 1994.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (No. 51377024), Natural Science Foundation of Shanghai (No. 14ZR1428300), and Science and Technology Commission of Shanghai Municipality (No. 13441900802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengli Song.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Yu Zhou and Binbin Ren have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Ren, B., Li, B. et al. Changes in Small Intestine Tissue Compressed by a Linear Stapler Based on Cole Y Model. Ann Biomed Eng 44, 3583–3592 (2016). https://doi.org/10.1007/s10439-016-1692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1692-5

Keywords

Navigation