Skip to main content

Advertisement

Log in

High-Resolution Ultrasonic Imaging of Dento-Periodontal Tissues Using a Multi-Element Phased Array System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intraoral ultrasonography uses high-frequency mechanical waves to study dento-periodontium. Besides the advantages of portability and cost-effectiveness, ultrasound technique has no ionizing radiation. Previous studies employed a single transducer or an array of transducer elements, and focused on enamel thickness and distance measurement. This study used a phased array system with a 128-element array transducer to image dento-periodontal tissues. We studied two porcine lower incisors from a 6-month-old piglet using 20-MHz ultrasound. The high-resolution ultrasonographs clearly showed the cross-sectional morphological images of the hard and soft tissues. The investigation used an integration of waveform analysis, travel-time calculation, and wavefield simulation to reveal the nature of the ultrasound data, which makes the study novel. With the assistance of time-distance radio-frequency records, we robustly justified the enamel-dentin interface, dentin-pulp interface, and the cemento-enamel junction. The alveolar crest level, the location of cemento-enamel junction, and the thickness of alveolar crest were measured from the images and compared favorably with those from the cone beam computed tomography with less than 10% difference. This preliminary and fundamental study has reinforced the conclusions from previous studies, that ultrasonography has great potential to become a non-invasive diagnostic imaging tool for quantitative assessment of periodontal structures and better delivery of oral care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Barber, F., S. Lees, and R. Lobene. Ultrasonic pulse-echo measurements in teeth. Arch. Oral Biol. 14:745–760, 1969.

    Article  CAS  PubMed  Google Scholar 

  2. Barriviera, M., W. R. Duarte, A. L. Januário, J. Faber, and A. C. B. Bezerra. A new method to assess and measure palatal masticatory mucosa by cone-beam computerized tomography. J. Clin. Periodontol. 36:564–568, 2009.

    Article  PubMed  Google Scholar 

  3. Baum, G., I. Greenwood, S. Slawski, and R. Smirnow. Observation of internal structures of teeth by ultrasonography. Science 139:495–496, 1963.

    Article  CAS  PubMed  Google Scholar 

  4. Bednarz, W. The thickness of periodontal soft tissue ultrasonic examination-current possibilities and perspectives. Dent. Med. Probl. 48:303–310, 2011.

    Google Scholar 

  5. Bornstein, M. M., R. Lauber, P. Sendi, and T. von Arx. Comparison of periapical radiography and limited cone-beam computed tomography in mandibular molars for analysis of anatomical landmarks before apical surgery. J. Endod. 37:151–157, 2011.

    Article  PubMed  Google Scholar 

  6. Brown, L. J., and H. Löe. Prevalence, extent, severity and progression of periodontal disease. Periodontol 2000(2):57–71, 1993.

    Article  Google Scholar 

  7. Bushberg, J. T., and J. M. Boone. The Essential Physics of Medical Imaging, Chapter 14. Philadelphia: Lippincott Williams & Wilkins, 2011.

    Google Scholar 

  8. Chen, W., E. H. Lou, P. Q. Zhang, L. H. Le, and D. Hill. Reliability of assessing the coronal curvature of children with scoliosis by using ultrasound images. J. Child. Orthop. 7:521–529, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chifor, R., M. Hedesiu, P. Bolfa, C. Catoi, M. Crisan, A. Serbanescu, A. F. Badea, I. Moga, and M. E. Badea. The evaluation of 20 MHz ultrasonography, computed tomography scans as compared to direct microscopy for periodontal system assessment. Med. Ultrason. 13:120–126, 2011.

    PubMed  Google Scholar 

  10. Culjat, M., R. S. Singh, D. Yoon, and E. R. Brown. Imaging of human tooth enamel using ultrasound. IEEE Trans. Med. Imaging 22:526–529, 2003.

    Article  CAS  PubMed  Google Scholar 

  11. Du Bois, A., B. Kardachi, and P. Bartold. Is there a role for the use of volumetric cone beam computed tomography in periodontics? Aust. Dent. J. 57:103–108, 2012.

    Article  PubMed  Google Scholar 

  12. Fukukita, H., T. Yano, A. Fukumoto, K. Sawada, T. Fujimasa, and I. Sunada. Development and application of an ultrasonic imaging system for dental diagnosis. J. Clin. Ultrasound 13:597–600, 1985.

    Article  CAS  PubMed  Google Scholar 

  13. Ghorayeb, S. R., C. A. Bertoncini, and M. K. Hinders. Ultrasonography in dentistry. IEEE Trans. Ultrason. Ferroelect. Freq. Control 55:1256–1266, 2008.

    Article  Google Scholar 

  14. Hefti, A. F., and P. M. Preshaw. Examiner alignment and assessment in clinical periodontal research. Periodontol 2000(59):41–60, 2012.

    Article  Google Scholar 

  15. Hughes, D., J. Girkin, S. Poland, C. Longbottom, T. Button, J. Elgoyhen, H. Hughes, C. Meggs, and S. Cochran. Investigation of dental samples using a 35 MHz focussed ultrasound piezocomposite transducer. Ultrasonics 49:212–218, 2009.

    Article  CAS  PubMed  Google Scholar 

  16. Huysmans, M., and J. Thijssen. Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion? J. Dent. 28:187–191, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Irion, K., W. Nüssle, C. Löst, and U. Faust. Determination of the acoustical properties of enamel, dentin and alveolar bone. Ultraschall in der Medizin (Stuttgart, Germany: 1980) 7:87–93, 1986.

    Article  CAS  Google Scholar 

  18. Jeffcoat, M., and M. Reddy. A comparison of probing and radiographic methods for detection of periodontal disease progression. Curr. Opin. Dent. 1:45–51, 1991.

    CAS  PubMed  Google Scholar 

  19. Kao, R. T., and K. Pasquinelli. Thick vs. thin gingival tissue: a key determinant in tissue response to disease and restorative treatment. J. Calif. Dent. Assoc. 30:521–526, 2002.

    PubMed  Google Scholar 

  20. Korostoff, J., A. Aratsu, B. Kasten, and M. Mupparapu. Radiologic assessment of the periodontal patient. Dent. Clin. North Am. 60:91–104, 2016.

    Article  PubMed  Google Scholar 

  21. Le, L. H. An investigation of pulse-timing techniques for broadband ultrasonic velocity determination in cancellous bone: a simulation study. Phys. Med. Biol. 43:2295, 1998.

    Article  CAS  PubMed  Google Scholar 

  22. Le, L. H., Y. J. Gu, Y. P. Li, and C. Zhang. Probing long bones with ultrasonic body waves. Appl. Phys. Lett. 96:114102, 2010.

    Article  Google Scholar 

  23. Listgarten, M. Periodontal probing: what does it mean? J. Clin. Periodontol. 7:165–176, 1980.

    Article  CAS  PubMed  Google Scholar 

  24. Lopes, F. M., R. A. Markarian, C. L. Sendyk, C. P. Duarte, and V. E. Arana-Chavez. Swine teeth as potential substitutes for in vitro studies in tooth adhesion: a SEM observation. Arch. Oral Biol. 51:548–551, 2006.

    Article  PubMed  Google Scholar 

  25. Löst, C., K. M. Irion, and W. Nüssie. Determination of the facial/oral alveolar crest using RF-echograms. J. Clin. Periodontol. 16:539–544, 1989.

    Article  PubMed  Google Scholar 

  26. Ludlow, J. B., L. Davies-Ludlow, S. Brooks, and W. Howerton. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac. Radiol. 35:219–226, 2014.

    Article  Google Scholar 

  27. Misch, K. A., E. S. Yi, and D. P. Sarment. Accuracy of cone beam computed tomography for periodontal defect measurements. J. Periodontol. 77:1261–1266, 2006.

    Article  PubMed  Google Scholar 

  28. Mol, A. Imaging methods in periodontology. Periodontol 2000(34):34–48, 2004.

    Article  Google Scholar 

  29. Nguyen, K.-C. T., L. H. Le, N. R. Kaipatur, and P. W. Major. Imaging the cemento-enamel junction using a 20-MHz ultrasonic transducer. Ultrasound Med. Biol. 42:333–338, 2016.

    Article  PubMed  Google Scholar 

  30. Nguyen, K. C. T., L. H. Le, T. N. H. T. Tran, M. D. Sacchi, and E. H. M. Lou. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies. Ultrasonics 54:1178–1185, 2014.

    Article  PubMed  Google Scholar 

  31. Njeh, C., T. Fuerst, E. Diessel, and H. Genant. Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos. Int. 12:1–15, 2001.

    CAS  PubMed  Google Scholar 

  32. Pihlstrom, B. L., B. S. Michalowicz, and N. W. Johnson. Periodontal diseases. Lancet 366:1809–1820, 2005.

    Article  PubMed  Google Scholar 

  33. Radu, C., B. M. Eugenia, H. Mihaela, S. Andrea, and B. A. Florin. Experimental model for measuring and characterisation of the dento-alveolar system using high frequencies ultrasound techniques. Med. Ultrason. 12:127–132, 2010.

    PubMed  Google Scholar 

  34. Salmon, B., and D. Le Denmat. Intraoral ultrasonography: development of a specific high-frequency probe and clinical pilot study. Clin. Oral Investig. 16:643–649, 2012.

    Article  PubMed  Google Scholar 

  35. Savitha, B., and K. Vandana. Comparative assesment of gingival thickness using transgingival probing and ultrasonographic method. Indian. J. Dent. Res. 16:135, 2005.

    CAS  Google Scholar 

  36. Scarfe, W. C., and A. G. Farman. What is cone-beam CT and how does it work? Dent. Clin. North Am. 52:707–730, 2008.

    Article  PubMed  Google Scholar 

  37. Scarfe, W. C., A. G. Farman, and P. Sukovic. Clinical applications of cone-beam computed tomography in dental practice. J. Can. Dent. Assoc. 72:75, 2006.

    PubMed  Google Scholar 

  38. Slak, B., A. Daabous, W. Bednarz, E. Strumban, and R. G. Maev. Assessment of gingival thickness using an ultrasonic dental system prototype: a comparison to traditional methods. Ann. Anat. 199:98–103, 2015.

    Article  PubMed  Google Scholar 

  39. The-Canadian-Dental-Association. Dentist Questions and Answers. 2014. http://www.cda-adc.ca/_files/about/news_events/health_month/PDFs/dentist_ques-tions_answers.pdf. Accessed October 15, 2015.

  40. Theodorakou, C., A. Walker, K. Horner, R. Pauwels, R. Bogaerts, R. Jacobs, and SEDENTEXCT Project Consortium. Estimation of paediatric organ and effective doses from dental cone beam CT using anthropomorphic phantoms. Br. J. Radiol. 85(1010):153–160, 2014.

    Article  Google Scholar 

  41. Toda, S., T. Fujita, H. Arakawa, and K. Toda. An ultrasonic nondestructive technique for evaluating layer thickness in human teeth. Sens. Actuators A Phys. 125:1–9, 2005.

    Article  CAS  Google Scholar 

  42. Tole, N. M., and H. Ostensen. Basic Physics of Ultrasonographic Imaging. Geneva: World Health Organization, 2005.

    Google Scholar 

  43. Tsiolis, F. I., I. G. Needleman, and G. S. Griffiths. Periodontal ultrasonography. J. Clin. Periodontol. 30:849–854, 2003.

    Article  PubMed  Google Scholar 

  44. Tyndall, D. A., and S. Rathore. Cone-beam CT diagnostic applications: caries, periodontal bone assessment, and endodontic applications. Dent. Clin. North Am. 52:825–841, 2008.

    Article  PubMed  Google Scholar 

  45. Vasconcelos, K. D., K. M. Evangelista, C. D. Rodrigues, C. Estrela, T. O. de Sousa, and M. A. G. Silva. Detection of periodontal bone loss using cone beam CT and intraoral radiography. Dentomaxillofac Rad. 41:64–69, 2012.

    Article  Google Scholar 

  46. Vayron, R., V. Mathieu, A. Michel, and G. Haïat. Assessment of in vitro dental implant primary stability using an ultrasonic method. Ultrasound Med. Biol. 40:2885–2894, 2014.

    Article  PubMed  Google Scholar 

  47. Vayron, R., E. Soffer, F. Anagnostou, and G. Haïat. Ultrasonic evaluation of dental implant osseointegration. J. Biomech. 47:3562–3568, 2014.

    Article  PubMed  Google Scholar 

  48. Walter, C., P. D. M. Dent, J. C. Schmidt, and K. Dula. Cone beam computed tomography (CBCT) for diagnosis and treatment planning in periodontology: a systematic review. Quintessence Int. (Berlin, Germany: 1985) 47:25–37, 2015.

    Google Scholar 

  49. Wang, S., Y. Liu, D. Fang, and S. Shi. The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis. 13:530–537, 2007.

    Article  CAS  PubMed  Google Scholar 

  50. Xiang, X., M. G. Sowa, A. M. Iacopino, R. G. Maev, M. D. Hewko, A. Man, and K.-Z. Liu. An update on novel non-invasive approaches for periodontal diagnosis. J. Periodontol. 81:186–198, 2010.

    Article  PubMed  Google Scholar 

  51. Yoshida, H., H. Akizuki, and K.-I. Michi. Intraoral ultrasonic scanning as a diagnostic aid. J. Craniomaxillofac. Surg. 15:306–311, 1987.

    Article  CAS  PubMed  Google Scholar 

  52. Zimbran, A., S. Dudea, and D. Dudea. Evaluation of periodontal tissues using 40 MHz ultrasonography preliminary report. Med. Ultrason. 15:6–9, 2013.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence H. Le.

Additional information

Associate Editor Agata A. Exner oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, KC.T., Le, L.H., Kaipatur, N.R. et al. High-Resolution Ultrasonic Imaging of Dento-Periodontal Tissues Using a Multi-Element Phased Array System. Ann Biomed Eng 44, 2874–2886 (2016). https://doi.org/10.1007/s10439-016-1634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1634-2

Keywords

Navigation