Skip to main content

Ultrasound for Periodontal Imaging

  • Chapter
  • First Online:
Dental Ultrasound in Periodontology and Implantology

Abstract

Due to a paradigm shift in minimizing ionizing radiation in recent years, the use of ultrasound as a non-ionizing radiation-free imaging tool in the field of dentistry is emerging. However, ultrasonic imaging of the periodontal complex is challenging to say the least, as the tissues have different wave-speeds that require different source frequencies to image the tissue structures properly. Added to the complexity is the porous nature of the alveolar bone, which tends to scatter ultrasound energy, thus degrading the sharpness of the imaged soft/hard tissue boundaries. This chapter discusses briefly deficiencies in the current clinical methods to image the periodontium, and presents ultrasound images of ex vivo and in vivo studies performed by our research group. The ultrasound images capture the periodontium and the associated boundaries clearly. Oral ultrasonography will become a useful diagnostic tool to deliver better oral care in the foreseeable future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman MG, et al. Newman and Carranza’s clinical periodontology e-book. Elsevier Health Sciences; 2018. ISBN:032353323X.

    Google Scholar 

  2. Cohen L. Keratinization of the gingivae. Dent Pract Dent Rec. 1967;18.4:134–8. ISSN:0011-8729.

    PubMed  Google Scholar 

  3. Ainamo J, Löe H. Anatomical characteristics of gingiva. A clinical and microscopic study of the free and attached gingiva. J Periodontol. 1966;37.1:5–13. ISSN:1943-3670.

    Article  PubMed  Google Scholar 

  4. Foster BL. On the discovery of cementum. J Periodontal Res. 2017;52.4:666–85. ISSN:0022-3484.

    Article  PubMed  PubMed Central  Google Scholar 

  5. De Jong T, et al. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration. J Periodontal Res. 2017;52.6:965–74. ISSN:0022-3484.

    Article  PubMed  Google Scholar 

  6. Goldman HM. Alveolar bone in health and disease, possibilities of reattachment. J Dent Med. 1948;3.2:30. ISSN:0096-0241.

    PubMed  Google Scholar 

  7. Stashenko P, Yu SM, Wang C-Y. Kinetics of immune cell and bone resorptive responses to endodontic infections. J Endod. 1992;18.9:422–6. ISSN:0099-2399.

    Article  PubMed  Google Scholar 

  8. Chu T-MG, Liu SS-Y, Babler WJ. Craniofacial biology, orthodontics, and implants. In: Basic and applied bone biology. Amsterdam: Elsevier; 2014. p. 225–42.

    Chapter  Google Scholar 

  9. Manson JD. Bone morphology and bone loss in periodontal disease. J Clin Periodontol. 1976;3.1:14–22. ISSN:0303-6979.

    Article  PubMed  Google Scholar 

  10. Beube FE. Correlation of degree of alveolar bone loss with other factors for determining the removal or retention of teeth. Dent Clin North Am. 1969;13.4:801. ISSN:0011-8532.

    PubMed  Google Scholar 

  11. Kinane DF, Marshall GJ. Periodontal manifestations of systemic disease. Aust Dent J. 2001;46.1:2–12. ISSN:0045-0421.

    Article  PubMed  Google Scholar 

  12. Jeffcoat MK. Bone loss in the oral cavity. J Bone Miner Res. 1993;8.S2:S467–73. ISSN:0884-0431.

    Google Scholar 

  13. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366.9499:1809–20. ISSN:0140-6736.

    Article  PubMed  Google Scholar 

  14. Web Page. 2014. http://www.cda-adc.ca/_files/about/news_events/health_month/PDFs/dentist_questions_answers.pdf.

  15. Listgarten MA. Periodontal probing: what does it mean? J Clin Periodontol. 1980;7.3:165–76. ISSN:0303-6979.

    Article  PubMed  Google Scholar 

  16. Xiang X, et al. An update on novel non-invasive approaches for periodontal diagnosis. J Periodontol. 2010;81.2:186–98. ISSN:0022-3492.

    Article  PubMed  Google Scholar 

  17. Preshaw PM, et al. Measurement of clinical attachment levels using a constant-force periodontal probe modified to detect the cementoenamel junction. J Clin Periodontol. 1999;26.7:434–40. ISSN:0303-6979.

    Article  PubMed  Google Scholar 

  18. Hug HU, et al. Validity of clinical assessments related to the cementoenamel junction. J Dent Res. 1983;62.7:825–9. ISSN:0022-0345.

    Article  PubMed  Google Scholar 

  19. Misch KA, Erica SY, Sarment DP. Accuracy of cone beam computed tomography for periodontal defect measurements. J Periodontol. 2006;77.7:1261–6. ISSN:1943-3670.

    Article  PubMed  Google Scholar 

  20. Haralick RM, Ramesh V, Hausmann E, Allen K. Computerized detection of cemento-enamel junctions in digitized dental radiographs. In: Images of the Twenty-First Century. Proceedings of the Annual International Engineering in Medicine and Biology Society, 1989 Nov 9: p. 1652–54. IEEE.

    Google Scholar 

  21. Walter C, et al. Cone beam computed tomography (CBCT) for diagnosis and treatment planning in periodontology: a systematic review. Quintessence Int. 2016;47.1:25–37.

    PubMed  Google Scholar 

  22. K de Faria Vasconcelos, et al. Detection of periodontal bone loss using cone beam CT and intraoral radiography. Dentomaxillofac Radiol. 2012;41.1:64–9. ISSN:0250-832X.

    Google Scholar 

  23. Sun L, et al. Accuracy of cone-beam computed tomography in detecting alveolar bone dehiscences and fenestrations. Am J Orthod Dentofacial Orthop. 2015;147.3:313–23. ISSN:0889-5406.

    Article  PubMed  Google Scholar 

  24. Leung CC, et al. Accuracy and reliability of cone-beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. Am J Orthod Dentofacial Orthop. 2010;137.4:S109–19. ISSN:0889-5406.

    Article  PubMed  Google Scholar 

  25. Grimard BA, et al. Comparison of clinical, periapical radiograph, and cone-beam volume tomography measurement techniques for assessing bone level changes following regenerative periodontal therapy. J Periodontol. 2009;80.1:48–55. ISSN:0022-3492.

    Article  PubMed  Google Scholar 

  26. Haas LF, et al. Precision of cone beam CT to assess periodontal bone defects: a systematic review and meta-analysis. Dentomaxillofac Radiol. 2017;47.2:20170084. ISSN:0250-832X.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin North Am. 2008;52.4:707–30. ISSN:0011-8532.

    Article  PubMed  Google Scholar 

  28. Theodorakou C, et al. Estimation of paediatric organ and effective doses from dental cone beam CT using anthropomorphic phantoms. Br J Radiol. 2012;85.1010:153–60. ISSN:0007-1285.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brüllmann D, Schulze RKW. Spatial resolution in CBCT machines for dental/maxillofacial applications—what do we know today? Dentomaxillofac Radiol. 2014;44.1:20140204. ISSN:0250-832X.

    Article  PubMed Central  Google Scholar 

  30. Li G. Patient radiation dose and protection from cone-beam computed tomography. Imaging Sci Dent. 2013;43.2:63–9. ISSN:2233-7822.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nguyen K-CT, Le LH, Tran TNHT, Sacchi MD, Lou EHM. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in-vitro bone studies. Ultrason. 2014;54.5:1178–85.

    Article  Google Scholar 

  32. Zheng R, Le LH, Sacchi MD, Lou E. Imaging internal structure of long bones using wave scattering theory. Ultrasound Med Biol. 2015;40.11:2955–65.

    Article  Google Scholar 

  33. Chen W, Le LH, Lou E. Reliability of the axial vertebral rotation measurements of adolescent idiopathic scoliosis using the center of lamina method on ultrasound images: in-vitro and in-vivo study. J Euro Spine. 2016;25.10:3265–73.

    Article  Google Scholar 

  34. Baum G, et al. Observation of internal structures of teeth by ultrasonography. Science. 1963;139.3554:495–6. ISSN:0036-8075.

    Article  PubMed  Google Scholar 

  35. Barber FE, Lees S, Lobene RR. Ultrasonic pulse-echo measurements in teeth. Arch Oral Biol. 1969;14.7:745, IN3. ISSN:0003-9969.

    Google Scholar 

  36. Tsiolis FI, Needleman IG, Griffiths GS. Periodontal ultrasonography. J Clin Periodontol. 2003;30.10:849–54. ISSN:1600-051X.

    Article  PubMed  Google Scholar 

  37. Chifor R, et al. The evaluation of 20 MHz ultrasonography, computed tomography scans as compared to direct microscopy for periodontal system assessment. Med Ultrason. 2011;13.2:120–6.

    PubMed  Google Scholar 

  38. Nguyen K-CT, Le LH, Kaipatur NR, Major PW. Imaging cemento-enamel junction using a 20-MHz ultrasonic transducer. Ultrasound Med Biol. 2016;42.1:333–8.

    Article  PubMed  Google Scholar 

  39. Nguyen K-CT, Le LH, Kaipatur NR, Zheng R, Lou EH, Major PW. High-resolution ultrasonic imaging of dento-periodontal tissues using a multi-element phased array system. Ann Biomed Eng. 2016; 44(10):2874-86. ISSN:0090-6964.

    Article  PubMed  Google Scholar 

  40. Fukukita H, et al. Development and application of an ultrasonic imaging system for dental diagnosis. J Clin Ultrasound. 1985;13.8:597–600. ISSN:1097-0096.

    Article  PubMed  Google Scholar 

  41. Salmon B, Le Denmat D. Intraoral ultrasonography: development of a specific high-frequency probe and clinical pilot study. Clin Oral Investig. 2012;16.2:643–9. ISSN:1432-6981.

    Article  PubMed  Google Scholar 

  42. Zimbran A, Dudea S, Dudea D. Evaluation of periodontal tissues using 40MHz ultrasonography. Preliminary report. Med Ultrason. 2013;15.1:6–9. ISSN:1844-4172.

    Article  PubMed  Google Scholar 

  43. Chan H-L, et al. Non-invasive evaluation of facial crestal bone with ultrasonography. PLoS One. 2017;12.2:e0171237. ISSN:1932-6203.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cotti E, et al. A new technique for the study of periapical bone lesions: ultrasound real time imaging. Int Endod J. 2002;35.2:148–52. ISSN:0143-2885.

    Article  PubMed  Google Scholar 

  45. Musu D, et al. Ultrasonography in the diagnosis of bone lesions of the jaws: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;122.1:e19–29. ISSN:2212-4403.

    Article  PubMed  Google Scholar 

  46. Tole NM, Ostensen H. Basic physics of ultrasonographic imaging. World Health Organization; 2005. ISBN:9241592990.

    Google Scholar 

  47. Culjat MO, et al. A review of tissue substitutes for ultrasound imaging. Ultrasound Med Biol. 2010;36.6:861–73. ISSN:0301-5629.

    Article  PubMed  Google Scholar 

  48. Löst C, Irion K-M, Nüssie W. Determination of the facial/oral alveolar crest using RF-echograms. J Clin Periodontol. 1989;16.8:539–44. ISSN:1600-051X.

    Article  PubMed  Google Scholar 

  49. Nguyen K-CT, Shi D, Kaipatur NR, LOU HM, Major PW, Punithakumar K, Le LH. Graph cuts-based segmentation of alveolar bone in ultrasound imaging. In: 2018 IEEE international conference on bioinformatics and biomedicine (BIBM). Piscataway: IEEE; 2018 Dec 3: p. 2049–55. ISBN:1538654881.

    Google Scholar 

  50. Nguyen K-CT, Kaipatur NR, Lou EH, Major PW, Punithakumar K, Le LH. Registration of ultrasound and CBCT images for enhancing tooth-periodontinum visualization: a feasibility study. In: 2019 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 2019 May 9: p. 1–5. IEEE. ISBN:1728118298.

    Google Scholar 

  51. Duong DQ, Nguyen K-CT, Kaipatur NR, Lou EH, Noga M, Major PW, Punithakumar K, Le LH. Fully automated segmentation of alveolar bone using deep convolutional neural networks from intraoral ultrasound images. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2019 Jul 23: p. 6632–35. IEEE.

    Google Scholar 

  52. Nguyen K-CT, Duong DQ, Almeida FT, Major PW, Pham T-T, Kaipatur NR, Lou EHM, Noga M, Punithakumar K, Le LH. Machine learning-based segmentation of alveolar bone in intraoral ultrasonographs. J Dental Res. May 11, 2020. http://doi.org/10.1177/0022034520920593.

  53. Nguyen K-CT, Pacheco-Preira C, Kaipatur NR, Cheung J, Major PW, Le LH. Comparison of ultrasound imaging and cone-beam computed tomography for examination of the alveolar bone level: a systematic review. PloS ONE 2018;13.10:e0200596. http://doi.org/10.1371/journal.pone.0200596.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Women and Children’s Health Research Institute (WCHRI), Canada for the financial support of a Seed Grant. The work was partly supported by LH Le’s NSERC Discovery Grant. KCT Nguyen acknowledges the support from Alberta Innovates for the PhD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence H. Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le, L.H., Nguyen, KC.T., Kaipatur, N.R., Major, P.W. (2021). Ultrasound for Periodontal Imaging. In: Chan, HL.(., Kripfgans, O.D. (eds) Dental Ultrasound in Periodontology and Implantology. Springer, Cham. https://doi.org/10.1007/978-3-030-51288-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51288-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51287-3

  • Online ISBN: 978-3-030-51288-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics