Skip to main content
Log in

Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes

  • Computational Biomechanics for Patient-Specific Applications
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas’ volume image to the subject’s one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas’ mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung’s geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue’s biomechanical response to the activation of an important tongue muscle, before and after cancer surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Acosta, O., A. Simon, F. Monge, et al. Evaluation of multi-atlas-based segmentation of CT scans in prostate cancer radiotherapy. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1966–1969, 2011.

  2. ANSYS Inc, ANSYS Fluent, 2015. Available from: www.ansys.com.

  3. Badin, P., P. Borel, G. Bailly, L. Revret, M. Baciu, and C. Segebarth. Towards an audiovisual virtual talking head: 3D articulatory modeling of tongue, lips and face based on MRI and video images. In: 5th Speech Production Seminar, 2000 pp. 261–264.

  4. Bah, M. T., P. B. Nair, and M. Browne. Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements. Medical engineering and physics, 31(10): 1235–1243, 2009.

    Article  PubMed  Google Scholar 

  5. Baldwin, M. A., J. E. Langenderfer, P. J. Rullkoetter, and P. J. Laz. Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach. Computer methods and programs in biomedicine. 97(3): 232–240, 2010.

    Article  Google Scholar 

  6. Barber, D. C., E. Oubel, A. F. Frangi, and D. R. Hose. Efficient computational fluid dynamics mesh generation by image registration. Medical image analysis. 11(6): 648–662, 2007.

    Article  PubMed  CAS  Google Scholar 

  7. Benzley, S. E., E. Perry, K. Merkley, B. Clark, and G. Sjaardama. A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elastoplastic analysis. In: Proceedings of the 4th International Meshing Roundtable, vol. 17 pp. 179–191, 1995.

  8. Blemker, S. S., P. M. Pinsky, and S. L. Delp. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. Journal of biomechanics. 38(4): 657–665, 2005.

    Article  PubMed  Google Scholar 

  9. Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression Trees. Boca Raton: CRC Press, 1984.

  10. Buchaillard, S., M. Brix, P. Perrier, and Y. Payan. Simulations of the consequences of tongue surgery on tongue mobility: implications for speech production in post-surgery conditions. The International Journal of Medical Robotics and Computer Assisted Surgery. 3(3), 252–261, 2007.

    Article  Google Scholar 

  11. Buchaillard, S., P. Perrier, and Y. Payan. A biomechanical model of cardinal vowel production: Muscle activations and the impact of gravity on tongue positioning. The Journal of the Acoustical Society of America. 126(4): 2033–2051, 2009.

    Article  PubMed  Google Scholar 

  12. Bucki, M., C. Lobos, and Y. Payan. A fast and robust patient specific finite element mesh registration technique: application to 60 clinical cases. Medical image analysis. 14(3): 303–317, 2010.

    Article  PubMed  Google Scholar 

  13. Bucki, M., C. Lobos, Y. Payan, and N. Hitschfeld. Jacobian-based repair method for finite element meshes after registration. Engineering with Computers. 27(3): 285–297, 2011.

    Article  Google Scholar 

  14. Chenchen, T. Generation of Patient-Specific Finite-Element Mesh from 3D Medical Images. Doctoral dissertation, National University of Singapore, 2013.

  15. Couteau, B., Y. Payan, and S. Lavallée. The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures. Journal of biomechanics. 33(8): 1005–1009, 2000.

    Article  PubMed  CAS  Google Scholar 

  16. Dice, L. R. Measures of the amount of ecologic association between species. Ecology, 26.3: 297–302, 1945.

    Article  Google Scholar 

  17. Ditterrich, T. G. Machine learning research: four current direction. Artificial Intelligence Magzine. 4: 97–136, 1997.

    Google Scholar 

  18. Du, Q., and D. Wang. The optimal centroidal Voronoi tessellations and the gersho’s conjecture in the three-dimensional space. Computers and Mathematics with Applications. 49.9, 1355–1373, 2005.

    Article  Google Scholar 

  19. Fang, Q., and D. A. Boas. Tetrahedral mesh generation from volumetric binary and gray-scale images. In: ISBI’09 Proceedings of the 6th IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, pp. 1142–1145, 2009.

  20. Fernandez, J. W., P. Mithraratne, S. F. Thrupp, M. H. Tawhai, and P. J. Hunter. Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomechanics and modeling in mechanobiology. 2(3): 139–155, 2004.

    Article  PubMed  CAS  Google Scholar 

  21. Field, D. A. Qualitative measures for initial meshes. International Journal for Numerical Methods in Engineering. 47.4, 887–906, 2000.

    Article  Google Scholar 

  22. Garcia, V., O. Commowick, and G. Malandain. A robust and efficient block matching framework for non linear registration of thoracic CT images. In: Grand Challenges in Medical Image Analysis (MICCAI workshop), 2010, pp. 1–10.

  23. Geman, S., and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 6: 721–741, 1984.

    Article  PubMed  CAS  Google Scholar 

  24. Gerard, J.M., R. Wilhelms-Tricarico, P. Perrier, and Y. Payan. A 3D dynamical biomechanical tongue model to study speech motor control. Recent Research Developments in Biomechanics. 1: 49–64, 2003.

    Google Scholar 

  25. Gerig, G., M. Jomier, and M. Chakos. A new validation tool for assessing and improving 3D object segmentation. In Lecture Notes in Computer Science. Berlin, Germany: Springer, pp. 516–523, 2001.

  26. Glocker, B., N. Komodakis, G. Tziritas, N. Navab, and N. Paragios. Dense image registration through MRFs and efficient linear programming. Medical image analysis. 12(6): 731–741, 2008.

    Article  PubMed  Google Scholar 

  27. Grassi, L., N. Hraiech, E. Schileo, M. Ansaloni, M. Rochette, and M. Viceconti. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur. Medical engineering and physics. 33(1): 112–120, 2011.

    Article  Google Scholar 

  28. Harandi, M. N., R. Abugharbieh, and S. Fels. 3D segmentation of the tongue in MRI: a minimally interactive model-based approach. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2014. doi:10.1080/21681163.2013.864958.

  29. Iskarous, K. Patterns of tongue movement. Journal of Phonetics, 33(4), 363–381, 2005.

    Article  Google Scholar 

  30. Ji, S., J. C. Ford, R. M. Greenwald, J. G. Beckwith, K. D. Paulsen, L. A. Flashman, and T. W. McAllister. Automated subject-specific, hexahedral mesh generation via image registration. Finite Elements in Analysis and Design. 47(10): 1178–1185, 2011.

    Article  Google Scholar 

  31. Kelly S, Element shape testing. In: Ansys Theory Reference, Chap 13, Ansys, USA, 1998.

  32. Keyak, J. H., J. M. Meagher, H. B. Skinner, and C. D. Mote. Automated three-dimensional finite element modeling of bone: A new method. Journal of Biomedical Engineering. 12(5): 389–397, 1990.

    Article  PubMed  CAS  Google Scholar 

  33. Knupp, P. M. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II-a framework for volume mesh optimization and the condition number of the Jacobian matrix. International Journal for numerical methods in engineering. 48(8): 1165–1185, 2000.

    Article  Google Scholar 

  34. Komodakis, N., G. Tziritas, and N. Paragios. Fast, approximately optimal solutions for single and dynamic MRFs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07), pp. 1–8, 2007.

  35. Lamata, P., S. Niederer, D. Nordsletten, D. C. Barber, I. Roy, D. R. Hose, and N. Smith. An accurate, fast and robust method to generate patient-specific cubic Hermite meshes. Medical image analysis. 15(6): 801–813, 2011.

    Article  PubMed  Google Scholar 

  36. Lamata, P., I. Roy, B. Blazevic, A. Crozier, S. Land, S. A. Niederer, D. Hose, and N. P. Smith. Quality metrics for high order meshes: analysis of the mechanical simulation of the heart beat. IEEE Transactions on Medical Imaging, 32(1): 130–138, 2013.

    Article  PubMed  Google Scholar 

  37. Lederman, C., A. Joshi, I. Dinov, L. Vese, A. Toga, and J. D. Van Horn. The generation of tetrahedral mesh models for neuroanatomical MRI, NeuroImage. 55(1): 153–164, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee, J., J. Woo, F. Xing, E. Z. Murano, M. Stone, and J. L. Prince. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI. Computerized Medical Imaging and Graphics. 38(8): 714–724, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li, S. Z. Markov random field modeling in image analysis. Springer Science Business Media, 2009.

  40. Li, B., G. E. Christensen, J. Dill, E. A. Hoffman, and J. M. Reinhardt. 3D intersubject warping and registration of pulmonary CT images for a human lung model. In Medical Imaging, International Society for Optics and Photonics, pp. 324–335, 2002.

  41. Lobos, C. A set of mixed-elements patterns for domain boundary approximation in hexahedral meshes. In MMVR, pp. 268–272, 2013.

  42. Lobos, C., Y. Payan, and N. Hitschfeld. Techniques for the generation of 3D Finite Element Meshes of human organs. In A. Daskalaki (Ed.), Informatics in Oral Medicine: Advanced Techniques in Clinical and Diagnostic Technologies. Hershey, PA: Medical Information Science Reference. 126–158, 2010.

    Chapter  Google Scholar 

  43. Maes, F., A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging. 16(2): 187–198, 1997.

    Article  PubMed  CAS  Google Scholar 

  44. Mansoor, A., U. BAGCI, B. FOSTER, et al. Segmentation and Image Analysis of Abnormal Lungs at CT: Current Approaches, Challenges, and Future Trends. RadioGraphics. 35(4), 1056–1076, 2015.

    Article  PubMed  Google Scholar 

  45. Mattes, D., D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank. PET-CT image registration in the chest using free-form deformations. IEEE Transactions on Medical Imaging. 22(1), 120–128, 2003.

    Article  PubMed  Google Scholar 

  46. Mitchell, S. A., A Technical History of Hexahedral Mesh Generation. In: 11th International Meshing Roundtable, short course, 2002.

  47. Mohamed, A., and C. Davatzikos. Finite element mesh generation and remeshing from segmented medical images. In: ISBI’04 Proceedings of the 6th IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro, vol. 1, pp. 420–423, 2004.

  48. Molino, N., R. Bridson, J. Teran, and R. Fedkiw. A Crystalline, Red Green Strategy for Meshing Highly Deformable Objects with Tetrahedra. In: 12th International Meshing Roundtable, Santa Fe, New Mexico, USA. 103–114, 2003.

  49. Murphy, K., B. Van Ginneken, J. M. Reinhardt, S. Kabus, K. Ding, X. Deng, K. Cao et al. Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. Medical Imaging, IEEE Transactions on 30, no. 11: 1901–1920, 2011.

    Article  PubMed  Google Scholar 

  50. Nazari, M. A., P. Perrier, and Y. Payan. The Distributed Lambda (λ) Model (DLM): a 3D, Finite-element muscle model based on feldman’s λ model assessment of orofacial gestures. Journal of speech, language, and hearing research. 56(6): 1909–1923, 2013.

    Article  Google Scholar 

  51. Nikos, K., G. Tziritas, and N. Paragios. Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal-dual strategies. Computer Vision and Image Understanding. 112(1): 14–29, 2008.

    Article  Google Scholar 

  52. Powell, M.J.D. A fast algorithm for nonlinearly constrained optimization calculations. In: Numerical Analysis, Berlin: Springer, pp. 144–157, 1987.

  53. Roche, A., G. Malandain, X. Pennec, and N. Ayache. The correlation ratio as a new similarity measure for multimodal image registration. In: Medical Image Computing and Computer-Assisted Interventation-MICCAI, Springer, Berlin, pp. 1115–1124, 1998.

  54. Rohan, P-Y., C. Lobos, M. A. Nazari, P. Perrier, and Y. Payan. Finite element modelling of nearly incompressible materials and volumetric locking: a case study. Computer methods in biomechanics and biomedical engineering. 17(sup1), 192–193, 2014.

    Article  Google Scholar 

  55. Rueckert, D., P. Aljabar, R. A. Heckemann, J. V. Hajnal, and A. Hammers. Diffeomorphic registration using B-splines. In: Medical Image Computing and Computer-Assisted Intervention “MICCAI, Berlin: Springer, pp. 702–709, 2006.

  56. Rueckert, D., L. I. Sonoda, C. Hayes, D. LG Hill, M. O. Leach, and D. J. Hawkes. Non-rigid registration using free-form deformations: Application to breast MR images, IEEE Transactions on Image Processing. 18(8): 712–721, 1999.

    Article  CAS  Google Scholar 

  57. Sigal, I. A., M. R. Hardisty, and C. M. Whyne. Mesh-morphing algorithms for specimen-specific finite element modeling. Journal of biomechanics, 41(7): 1381–1389, 2008.

    Article  PubMed  Google Scholar 

  58. Tautges, T. J., T. Blacker, and S. A. Mitchell. The whisker weaving algorithm: A connectivity-based method for constructing all-hexahedral finite element meshes. International Journal for Numerical Methods in Engineering. 39.19: 3327–3349, 1996.

    Article  Google Scholar 

  59. Van Rikxoort, E. M., B. D. Hoop, M. A. Viergever, M. Prokop, and B. V. Ginneken. Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. Medical physics 36, no. 7: 2934–2947, 2009.

    Article  PubMed  Google Scholar 

  60. Vercauteren, T., X. Pennec, A. Perchant, and N. Ayache. Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage. 45(1): S61–S72, 2009.

    Article  PubMed  Google Scholar 

  61. Viceconti, M., and F. Taddei. Automatic generation of finite element meshes from computed tomography data. Critical Reviews™ in Biomedical Engineering. 31(1-2): 27–72, 2003.

    Article  Google Scholar 

  62. Viceconti, M., M. Davinelli, F. Taddei, and A. Cappello. Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies, Journal of Biomechanics. 37:1597–1605, 2004.

    Article  PubMed  Google Scholar 

  63. Weatherill, N. P., and O. Hassan. Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. International Journal for Numerical Methods in Engineering. 12: 2005–2039, 1994.

    Article  Google Scholar 

  64. Wright, S. J., and J. Nocedal. Numerical optimization. Vol. 2. New York: Springer, 1999.

    Google Scholar 

  65. Zhang, L., and J. M. Reinhardt. 3D pulmonary CT image registration with a standard lung atlas. In: Medical Imaging. International Society for Optics and Photonics, pp. 67–77, 2000.

  66. Zhang, Y., C. Bajaj, and B. S. Sohn. 3D finite element meshing from imaging data, Computer Methods in Applied Mechanics and Engineering. 194(48): 5083–5106, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang, Y., T. JR. Hughes, and C. L. Bajaj. Automatic 3D mesh generation for a domain with multiple materials. In: Proceedings of the 16th International Meshing Roundtable, Springer, Berlin Heidelberg, pp. 367–386, 2008.

  68. Zhang, S., Y. Zhan, X. Cui, M. Gao, J. Huang, and D. Metaxas. 3D anatomical shape atlas construction using mesh quality preserved deformable models. Computer Vision and Image Understanding, 117(9): 1061–1071, 2013.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the AGIR program (Grenoble Universities) and by the ANR under reference ANR-11-LABX-0004. We are grateful to Georges Bettega (Grenoble Hospital), Mayra Moya Espinosa (Ensam Paris), Chenchen Tong (National University of Singapore) and Marek Bucki (Texisense Company) for many interactions and inputs to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Bijar.

Additional information

Associate Editor Karol Miller oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bijar, A., Rohan, PY., Perrier, P. et al. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes. Ann Biomed Eng 44, 16–34 (2016). https://doi.org/10.1007/s10439-015-1497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1497-y

Keywords

Navigation