Skip to main content
Log in

An Inverse Finite Element u/p-Formulation to Predict the Unloaded State of In Vivo Biological Soft Tissues

  • Computational Biomechanics for Patient-Specific Applications
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Physically realistic patient-specific biomechanical modelling is of paramount importance for many medical applications, where the geometry of tissues or organs is usually constructed from in vivo images. However, it is common for such biological structures to correspond to a deformed state due to being under external loadings. This necessitates the determination of the stress distribution of the known deformed state through an inverse analysis approach. To achieve this, we propose here a generalised finite element displacement/pressure (u/p)-formulation for evaluating the unloaded configuration of in vivo biological soft tissues that exhibit quasi-incompressible behaviour under finite deformations. Validity and applicability of the proposed numerical framework to practical inverse analysis problems in biomechanics is demonstrated through various numerical examples. The corresponding simulations utilise in vivo measurements of patient-specific geometries derived from different medical imaging modalities, and include recovery of the pressure-free configuration of human aortas and the gravity-free shape of the female breast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Fig. 8

Similar content being viewed by others

References

  1. Beck, J. V. and K. A. Woodbury. Inverse problems and parameter estimation: integration of measurements and analysis. Meas. Sci. Technol. 9(6):839–847, 1998.

    Article  CAS  Google Scholar 

  2. Bols, J., J. Degroote, B. Trachet, B. Verhegghe, P. Segers, and J. Vierendeels. Inverse modelling of image-based patient-specific blood vessels: zero-pressure geometry and in vivo stress incorporation. ESAIM. Math. Modell. Numer. Anal. 47:1059–1075, 2013.

    Article  Google Scholar 

  3. Carter, T., C. Tanner, N. Beechey-Newman, D. Barratt, and D. Hawkes. MR navigated breast surgery: method and initial clinical experience. In Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, pp. 356–363, 2008.

  4. Chavan, K. S., B. P. Lamichhane, and B. I. Wohlmuth. Locking-free finite element methods for linear and nonlinear elasticity in 2D and 3D. Comput. Methods Appl. Mech. Eng. 196(41–44):4075–4086, 2007.

    Article  Google Scholar 

  5. Chemla, D., I. Antony, K. Zamani, and A. Nitenberg. Mean aortic pressure is the geometric mean of systolic and diastolic aortic pressure in resting humans. J. Appl. Physiol. 99(6):2278–2284, 2005.

    Article  PubMed  Google Scholar 

  6. Das, A., A. Paul, M. D. Taylor, and R. Banerjee. Pulsatile arterial wall-blood flow interaction with wall pre-stress computed using an inverse algorithm. Biomed. Eng. Online 14(Suppl 1):S18, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Putter, S., B. J. B. M. Wolters, M. C. M. Rutten, M. Breeuwer, F. A. Gerritsen, and F. N. van de Vosse. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40(5):1081–1090, 2007.

    Article  PubMed  Google Scholar 

  8. del Palomar, A. P., B. Calvo, J. Herrero, J. López, and M. Doblaré. A finite element model to accurately predict real deformations of the breast. Med. Eng. Phys. 30(9):1089–1097, 2008.

    Article  PubMed  Google Scholar 

  9. Eiben, B. L. Han, J. Hipwell, T. Mertzanidou, S. Kabus, T. Buelow, C. Lorenz, G. M. Newstead, H. Abe, M. Keshtgar, S. Ourselin, and D. J. Hawkes. Biomechanically guided prone-to-supine image registration of breast MRI using an estimated reference state. In IEEE 10th International Symposium on Biomedical Imaging, pp. 214–217, 2013.

  10. Eiben, B., V. Vavourakis, J. H. Hipwell, S. Kabus, C. Lorenz, T. Buelow, and D. J. Hawkes. Breast deformation modelling: comparison of methods to obtain a patient specific unloaded configuration. In Proceedings of SPIE Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 9036, 2014, pp. 903615–903618.

  11. Gee, M. W., C. Reeps, H. H. Eckstein, and W. A. Wall. Prestressing in finite deformation abdominal aortic aneurysm simulation. J. Biomech. 42(11):1732–1739, 2009.

    Article  PubMed  CAS  Google Scholar 

  12. Gee M. W., Ch. Förster, and W. A. Wall. A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int. J. Numer. Methods Biomed. Eng. 26(1):52–72, 2010.

    Article  Google Scholar 

  13. Govindjee, S. and P. A. Mihalic. Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. Eng. 136(1–2):47–57, 1996.

    Article  Google Scholar 

  14. Govindjee, S. and P. A. Mihalic. Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int. J. Numer. Methods Eng. 43(5):821–838, 1998.

    Article  Google Scholar 

  15. Han, L. J. H. Hipwell, C. Tanner, Z. Taylor, T. Mertzanidou, J. Cardoso, S. Ourselin, and D. J. Hawkes. Development of patient-specific biomechanical models for predicting large breast deformation. Phys. Med. Biol. 57(2):455, 2012.

    Article  PubMed  Google Scholar 

  16. Holzapfel, G. A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Chichester: Wiley, 2000.

    Google Scholar 

  17. G. R. Joldes, A. Wittek, and K. Miller. A total lagrangian based method for recovering the un-deformed configuration in finite elasticity. Appl. Math. Model. 39:3913–3923, 2015.

    Article  Google Scholar 

  18. Killelea, B. K., J. B. Long, A. B. Chagpar, X. M. Ma, P. R. Soulos, J. S. Ross, and C. P. Gross. Trends and clinical implications of preoperative breast MRI in Medicare beneficiaries with breast cancer. Breast Cancer Res. Treat. 141(1):155–163, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kroon, M. A numerical framework for material characterisation of inhomogeneous hyperelastic membranes by inverse analysis. J. Comput. Appl. Math. 234(2):563–578, 2010.

    Article  Google Scholar 

  20. Lu, J., X. Zhou, and M. L. Raghavan. Computational method of inverse elastostatics for anisotropic hyperelastic solids. Int. J. Numer. Methods Eng. 69(6):1239–1261, 2007.

    Article  Google Scholar 

  21. Lu, J., X. Zhou, and M. L. Raghavan. Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J. Biomech. 40(3):693–696, 2007.

    Article  PubMed  Google Scholar 

  22. Lu J., X. Zhou, and M. L. Raghavan. Inverse method of stress analysis for cerebral aneurysms.Biomech. Model. Mechanobiol. 7(6):477–486 2008.

    Article  PubMed  Google Scholar 

  23. Malvern L.E. Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs: Prentice Hall, 1977.

    Google Scholar 

  24. Marchandise, E., J.-F. Remacle, and C. Geuzaine. Optimal parametrizations for surface remeshing. Eng. Comput. 30(3):383–402, 2014.

    Article  Google Scholar 

  25. Merkx, M.A.G., M. vant Veer, L. Speelman, M. Breeuwer, J. Buth, and F.N. van de Vosse. Importance of initial stress for abdominal aortic aneurysm wall motion: dynamic MRI validated finite element analysis. J. Biomech. 42(14):2369–2373, 2009.

    Article  PubMed  CAS  Google Scholar 

  26. Metaxa, E., N. Kontopodis, V. Vavourakis, K. Tzirakis, C. V. Ioannou, and Y. Papaharilaou. The influence of intraluminal thrombus on noninvasive abdominal aortic aneurysm wall distensibility measurement. Med. Biol. Eng. Comput. 53(4):299–308, 2015.

    Article  PubMed  Google Scholar 

  27. Mosora, F., A. Harmant, C. Bernard, A. Fossion, T. Poche, J. Juchmes, and S. Cescotto. Modelling the arterial wall by finite elements. Arch. Int. Physiol. Biochim. Biophys. 101(3):185–191, 1993.

    PubMed  CAS  Google Scholar 

  28. National Collaborating Centre for Cancer. NICE Guideline CG80, Early and locally advanced breast cancer: diagnosis and treatment. National Collaborating Centre for Cancer, February 2009. http://www.nice.org.uk/guidance/cg80/evidence/cg80-early-and-locally-advanced-breast-cancer-full-guideline2.

  29. Parker, A., A. T. Schroen, and D. R. Brenin. MRI utilization in newly diagnosed breast cancer: a survey of practicing surgeons. Ann. Surg. Oncol. 20(8):2600–2606, 2013.

    Article  PubMed  Google Scholar 

  30. Pilewskie M., and T. A. King. Magnetic resonance imaging in patients with newly diagnosed breast cancer. Cancer 120(14):2080–2089, 2014.

    Article  PubMed  Google Scholar 

  31. Raghavan, M. L., M. A. Baoshun, and M. F. Filinger. Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann. Biomed. Eng. 34(9):1414–1419, 2006.

    Article  PubMed  CAS  Google Scholar 

  32. Raghavan, M. L. and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33(4):475–482, 2000.

    Article  PubMed  CAS  Google Scholar 

  33. Rajagopal, V., J. Chung, P. M. F. Nielsen, and M. P. Nash. Finite element modelling of breast biomechanics: directly calculating the reference state. In: IEEE 28th Annual International Conference on Engineering in Medicine and Biology Society, 2006, pp. 420–423.

  34. Rajagopal, V., J. H. Chung, D. Bullivant, P. M. F. Nielsen, and M. P. Nash. Determining the finite elasticity reference state from a loaded configuration. Int. J. Numer. Methods Eng. 72(12):1434–1451, 2007.

    Article  Google Scholar 

  35. F. Riveros, S. Chandra, E.A. Finol, T.C. Gasser, and J.F. Rodriguez. A pull-back algorithm to determine the unloaded vascular geometry in anisotropic hyperelastic AAA passive mechanics. Ann. Biomed. Eng. 41(4):694–708, 2013.

    Article  PubMed  Google Scholar 

  36. Rodríguez, J. F., C. Ruiz, M. Doblaré, and G. A. Holzapfel. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. ASME J. Biomech. Eng. 130(2):021023–10 2008.

    Article  Google Scholar 

  37. Sussman, T. and K.-J. Bathe. A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. Struct. 26(1–2):357–409, 1987.

    Article  Google Scholar 

  38. Vavourakis, V., Y. Papaharilaou, and J. A. Ekaterinaris. Coupled fluid-structure interaction hemodynamics in a zero-pressure state corrected arterial geometry. J. Biomech. 44(13):2453–2460, 2011.

    Article  PubMed  CAS  Google Scholar 

  39. Wang, D. H. J., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J. Biomech. Eng. 123(6):536–539, 2001.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, D. H. J., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36(3):598–604, 2002.

    Article  PubMed  Google Scholar 

  41. Xie, J., J. Zhou, and Y. C. Fung. Bending of blood vessel wall: stress–strain laws of the intima-media and adventitial layers. J. Biomech. Eng. 117(1):136–145, 1995.

    Article  PubMed  CAS  Google Scholar 

  42. Yamada T. and F. Kikuchi. Mixed finite element method for large deformation analysis of incompressible hyperelastic materials. Theor. Appl. Mech. 39:61–73, 1990.

    Google Scholar 

  43. Zhou, X., M. L. Raghavan, R. E. Harbaugh, and J. Lu. Patient-specific wall stress analysis in cerebral aneurysms using inverse shell model. Ann. Biomed. Eng. 38(2):478–489, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the European 7th Framework Program: VPH-PICTURE (FP7-ICT-2011-9, 600948) and Marie-Curie Fellowship (FP7-PEOPLE-2013-IEF, 627025), and the EPSRC Programme Grant (EP/H0404610). The first author is also indebted to Drs. Eleni Metaxa and Yannis Papaharilaou for providing the segmented AAA geometry, and to Björn Eiben for preparing the segmented breast geometry and FE mesh.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Vavourakis.

Additional information

Associate Editor Karol Miller oversaw the review of this article.

Appendix: Mathematical Derivations

Appendix: Mathematical Derivations

The second Piola-Kirchhoff stress tensor for an elastic solid that is described by the modified stored-energy potential \(\bar{W} + Q\) 37 is given by

$$\begin{aligned} \varvec{S} = \varvec{\bar{S}} - \frac{2(\bar{p}-p)}{P(\bar{p})}\,\frac{\partial \bar{p}}{\partial \mathbf{C}} + \frac{(\bar{p}-p)^2}{P^2(\bar{p})}\,\frac{\partial P(\bar{p})}{\partial \mathbf{C}}, \end{aligned}$$
(11)

where \(\varvec{\bar{S}} = 2\,{\partial \bar{W}}/{\partial \mathbf{C}}\), \(\bar{p} = -\,{\partial \bar{W}}/{\partial J}\), and \(P(\bar{p}) = {\partial \bar{p}}/{\partial J}\). Applying the push-forward transformation (\(J\,\varvec{\sigma } = \mathbf{F}\cdot \mathbf{S}\cdot \mathbf{F}^T\)) on the above formula and considering that: \(\mathbf{F}\cdot \left[ {\partial \bullet }/{\partial \mathbf{C}}\right] \cdot \mathbf{F}^T = \mathbf{B}\cdot \left[ {\partial \bullet }/{\partial \mathbf{B}}\right]\), we obtain the Cauchy stress tensor for the forward problem

$$\begin{aligned} \varvec{\sigma } = \varvec{\bar{\sigma }} - \frac{2(\bar{p}-p)}{J P(\bar{p})}\,\mathbf{B}\cdot \frac{\partial \bar{p}}{\partial \mathbf{B}} + \frac{(\bar{p}-p)^2}{J P^2(\bar{p})}\,\mathbf{B}\cdot \frac{\partial P(\bar{p})}{\partial \mathbf{B}}. \end{aligned}$$
(12)

Re-parametrisation of the Cauchy stresses expression to an inverse setting,13 i.e., replacing \(J=\jmath ^{-1}\) and \(\mathbf{B}=\mathbf{c}^{-1}\), gives

$$\begin{aligned} \varvec{\sigma }&= \varvec{\bar{\sigma }} - \frac{2\jmath (\bar{p}-p)}{P(\bar{p})}\,\mathbf{c}^{-1}\cdot \frac{\partial \bar{p}}{\partial \mathbf{c}^{-1}} + \frac{\jmath (\bar{p}-p)^2}{P^2(\bar{p})}\,\mathbf{c}^{-1}\cdot \frac{\partial P(\bar{p})}{\partial \mathbf{c}^{-1}} \nonumber \\&= \varvec{\bar{\sigma }} - \frac{2\jmath (\bar{p}-p)}{P(\bar{p})}\,\mathbf{c}^{-1}\cdot \frac{\partial \bar{p}}{\partial J}\,\frac{\partial \jmath ^{-1}}{\partial \mathbf{c}^{-1}} + \frac{\jmath (\bar{p}-p)^2}{P^2(\bar{p})}\,\mathbf{c}^{-1}\cdot \frac{\partial P(\bar{p})}{\partial J}\,\frac{\partial \jmath ^{-1}}{\partial \mathbf{c}^{-1}}, \end{aligned}$$
(13)

where after some algebra it can be deduced that

$$\begin{aligned} \varvec{\sigma } = \varvec{\bar{\sigma }} - \frac{\bar{p}-p}{P(\bar{p})}\,\frac{\partial \bar{p}}{\partial J}\,\mathbf{I} + \frac{(\bar{p}-p)^2}{2 P^2(\bar{p})}\,\frac{\partial P(\bar{p})}{\partial J}\,\mathbf{I}. \end{aligned}$$
(14)

In the forward setting, the Cauchy stress tensor is defined by Eq. (1), where the potential stored-energy is a function of the modified strain invariants, i.e., \(\bar{W}(J_1,J_2,J)\). However, in the particular case of a transversely isotropic hyperelastic solid having one family of fibres—described by a single direction unit vector (\(\hat{\mathbf{N}}_{0}\)) in the reference state—the potential stored-energy can be extended to include the modified pseudo-invariants:16 \(J_4=J^{-2/3}\,\hat{\mathbf{N}}_{0}\cdot \mathbf{C}\cdot \hat{\mathbf{N}}_{0}\) and \(J_5=J^{-4/3}\,\hat{\mathbf{N}}_{0}\cdot \mathbf{C}^2\cdot \hat{\mathbf{N}}_{0}\). Apparently more pseudo-invariants can be incorporated in \(\bar{W}\) if more preferred directions of isotropy are considered in the constitutive model.

Using chain rule differentiation in Eq. (1), substituting the tensor derivatives of the modified invariants into Eq. (1) and making use of the Cayley–Hamilton theorem23 for \(\mathbf{B}\), i.e., \(\mathbf{B}^2 = I_1\,\mathbf{B} - I_2\,\mathbf{I} + J^2\,\mathbf{B}^{-1}\), produces

$$\begin{aligned} \varvec{\bar{\sigma }}&= \frac{\partial \bar{W}}{\partial J_1} \left( 2J^{-5/3}\,\mathbf{B}-{2J_1}/{3J} \mathbf{I}\right) + \frac{\partial \bar{W}}{\partial J_2} \left( {2J_2}/{3J} \mathbf{I}-2J^{-1/3}\,\mathbf{B}^{-1}\right) + \frac{\partial \bar{W}}{\partial J}\, \mathbf{I} \nonumber \\&\quad+ \frac{\partial \bar{W}}{\partial J_4} \left( 2 J^{-5/3}\,{\mathbf{A}_0}\right) + \frac{\partial \bar{W}}{\partial J_5} \left( 2 J^{-7/3}\,{\mathbf{A}_0}\cdot \mathbf{B} +2 J^{-7/3}\,\mathbf{B}\cdot {\mathbf{A}_0}\right). \end{aligned}$$
(15)

where \({\mathbf{A}_0} = \mathbf{F}\cdot (\hat{\mathbf{N}}_{0}\otimes \hat{\mathbf{N}}_{0})\cdot \mathbf{F}^T\!\). However, it is straightforward to extend this constitutive equation for multi-fibrous anisotropic hyperelastic materials by incorporating more pseudo-invariants in the isochoric part of the potential function.

Re-parametrisation of the above Cauchy stresses expression to an inverse setting can give the analytic expression

$$\begin{aligned} \varvec{\bar{\sigma }}&= \frac{\partial \bar{W}}{\partial J_1} \left( 2\jmath ^{5/3}\,\mathbf{c}^{-1}-{2}/{3} \jmath_2\,\jmath \,\,\mathbf{I}\right) + \frac{\partial \bar{W}}{\partial J_2} \left( {2}/{3} \jmath_1\,\jmath \mathbf{I}-2\jmath ^{1/3}\,\mathbf{c}\right) + \frac{\partial \bar{W}}{\partial J}\, \mathbf{I} \nonumber \\&\quad+ \frac{\partial \bar{W}}{\partial J_4} \left( 2\,\jmath_4^{-1}\,\jmath {\mathbf{a}_0}\right) + \frac{\partial \bar{W}}{\partial J_5} \left( 2\,\jmath_4^{-1}\,\jmath ^{5/3}\,{\mathbf{a}_0}\cdot \mathbf{c}^{-1} +2\,\jmath_4^{-1}\,\jmath ^{5/3}\,\mathbf{c}^{-1}\!\cdot {\mathbf{a}_0}\right), \end{aligned}$$
(16)

where \(J_1=\jmath_2\), \(J_2=\jmath_1\), \(J_4=\jmath_4^{-1}\), \(J_5=\jmath_5\,\jmath_4^{-1}\,\jmath ^2\), \(J=\jmath {-1}\) (\(\jmath =\det {\mathbf{f}}\)), and \(\jmath_1=\imath_1\,\jmath ^{-2/3}\!\), \(\jmath_2=\imath_2\,\jmath ^{-4/3}\!\), \(\jmath_4=\imath_4\,\jmath ^{-2/3}\!\), \(\jmath_5=\imath_5\,\jmath ^{-4/3}\!\), while \({\mathbf{a}_0}=\hat{\mathbf{n}}_{0}\otimes \hat{\mathbf{n}}_{0}\). The first and second invariants of the inverse deformation tensor \(\mathbf{c}\) are denoted with \(\imath_1\) and \(\imath_2\) respectively, while \(\imath_4\), \(\imath_5\) are the corresponding Eulerian pseudo-invariants of the fibre.20 Also, the fibre tangent unit vector in the deformed state, \(\hat{\mathbf{n}}_{0}\), is related to the corresponding one in the reference frame, \(\hat{\mathbf{N}}_{0}\), through the relationship:

$$\begin{aligned} \mathbf{F}\cdot \hat{\mathbf{N}}_{0} = I_4^{1/2} \hat{\mathbf{n}}_{0} \,\Leftrightarrow \, \hat{\mathbf{N}}_{0} = I_4^{1/2} \mathbf{F}^{-1}\!\cdot \hat{\mathbf{n}}_{0} \,\Leftrightarrow \, \hat{\mathbf{N}}_{0} = \imath_4^{-1/2} \mathbf{f}\cdot \hat{\mathbf{n}}_{0} \,\Leftrightarrow \, \hat{\mathbf{N}}_{0} = \jmath_4^{-1/2}\,\jmath ^{-1/3} \mathbf{f}\cdot \hat{\mathbf{n}}_{0}, \end{aligned}$$

In order to arrive at Eq. (2), one has to substitute the partial derivatives of the stored-energy function with respect to the inverse invariants, i.e., \({\partial \bar{W}}/{\partial J_1} = {\partial \bar{w}}/{\partial \jmath_2}\), \({\partial \bar{W}}/{\partial J_2} = {\partial \bar{w}}/{\partial \jmath_1}\), \({\partial \bar{W}}/{\partial J} = -\jmath ^2\,\,{\partial \bar{w}}/{\partial \jmath }\), \({\partial \bar{W}}/{\partial J_4} = -\jmath_4^2\,\,{\partial \bar{w}}/{\partial \jmath_4}-\jmath_4\,\jmath_5\,\,{\partial \bar{w}}/{\partial \jmath_5}\) and \({\partial \bar{W}}/{\partial J_5} = \jmath_4\,\,\jmath ^2\,\,{\partial \bar{w}}/{\partial \jmath_5}\), in Eq. (16).

Finally, taking the above equation and after some tedious algebra, the following analytic expression for the material tangent fourth-order tensor of Eq. (10b) can be deduced:

$$\begin{aligned} \bar{\mathsf {C}}_\text{UU} &=\left[ \frac{\partial ^2\bar{W}}{\partial J_1^2} \left( 4\,\jmath ^{5/3}\,\mathbf{c}^{-1}\!\!-{4}/{3} \jmath_2\,\jmath \,\,\mathbf{I}\right) + \frac{\partial ^2\bar{W}}{\partial J_2\partial J_1} \left( {4}/{3} \jmath_1\,\jmath \,\,\mathbf{I}\!-4\jmath ^{1/3}\,\mathbf{c}\right) + \frac{\partial ^2\bar{W}}{\partial J\partial J_1}\,2\, \mathbf{I} \right] \! \,\frac{\partial \jmath_2}{\partial \mathbf{c}} \nonumber \\ &\quad+\left[ \frac{\partial ^2\bar{W}}{\partial J_1\partial J_2} \left( 4\jmath ^{5/3}\,\mathbf{c}^{-1}\!\!-{4}/{3} \jmath_2\,\jmath \,\,\mathbf{I}\right) + \frac{\partial ^2\bar{W}}{\partial J_2^2} \left( {4}/{3} \jmath_1\,\jmath \,\,\mathbf{I}\!-4\jmath ^{1/3}\,\mathbf{c}\right) + \frac{\partial ^2\bar{W}}{\partial J\partial J_2}\,2\, \mathbf{I} \right] \! \,\frac{\partial \jmath_1}{\partial \mathbf{c}} \nonumber \\ &\quad-\, \frac{\partial ^2\bar{W}}{\partial J_1\partial J} \left( 2\jmath ^{2/3}\,\mathbf{c}^{-1}\!\!-{2}/{3} \jmath_2\,\mathbf{I}\right) \,\mathbf{c}^{-1} - \frac{\partial ^2\bar{W}}{\partial J_2\partial J} \left( {2}/{3} \jmath_1\,\mathbf{I}\!-2\jmath ^{-2/3}\,\mathbf{c}\right) \,\mathbf{c}^{-1} \nonumber \\ &\quad+\frac{\partial \bar{W}}{\partial J_1}\, \left( {20}/{3} \jmath ^{2/3}\,\mathbf{c}^{-1}\,\frac{\partial \jmath }{\partial \mathbf{c}} + 4\jmath ^{5/3}\,\mathsf {I}_{c^{-1}} - {4}/{3} \jmath \,\,\mathbf{I}\,\frac{\partial \jmath_2}{\partial \mathbf{c}} - {4}/{3} \jmath_2\,\,\mathbf{I}\,\frac{\partial \jmath }{\partial \mathbf{c}} \right) \nonumber \\ &\quad+\frac{\partial \bar{W}}{\partial J_2}\, \left( {4}/{3} \jmath \,\,\mathbf{I}\,\frac{\partial \jmath_1}{\partial \mathbf{c}} + {4}/{3} \jmath_1\,\,\mathbf{I}\,\frac{\partial \jmath }{\partial \mathbf{c}} - {4}/{3} \jmath ^{-2/3}\,\,\mathbf{c}\,\frac{\partial \jmath }{\partial \mathbf{c}} - 4\jmath ^{1/3}\,\,\mathsf {I} \right) \nonumber \\ &\quad-\, \frac{\partial ^2\bar{W}}{\partial J_4\partial J_4} \left( 4\,\jmath /\jmath_4^3 {\mathbf{a}_0}\,\frac{\partial \jmath_4}{\partial \mathbf{c}}\right) - \frac{\partial ^2\bar{W}}{\partial J_4\partial J_5} \left( 4\,\jmath /(\jmath_4\,\jmath_5^2) {\mathbf{a}_0}\,\frac{\partial \jmath_5}{\partial \mathbf{c}}\right) \nonumber \\ &\quad+\frac{\partial \bar{W}}{\partial J_4} \left( 4/\jmath_4 {\mathbf{a}_0}\,\frac{\partial \jmath }{\partial \mathbf{c}} - 4\,\jmath /\jmath_4^2 {\mathbf{a}_0}\,\frac{\partial \jmath_4}{\partial \mathbf{c}} \right) \nonumber \\ &\quad+\frac{\partial \bar{W}}{\partial J_5} \left( {10}/{3} \jmath ^{5/3}/\jmath_4 \mathbf{N}_{0c^{-1}}\,\mathbf{c}^{-1} - 4\,\jmath ^{5/3}/\jmath_4^2 \mathbf{N}_{0c^{-1}}\,\frac{\partial \jmath_4}{\partial \mathbf{c}} + 4\,\jmath ^{5/3}/\jmath_4 \mathsf {N}_{0c^{-1}} \right) \nonumber \\ &\quad-\, \frac{\partial ^2\bar{W}}{\partial J_5\partial J_4} \left( 4\,\jmath ^{5/3}/\jmath_4^3 \mathbf{N}_{0c^{-1}}\,\frac{\partial \jmath_4}{\partial \mathbf{c}}\right) - \frac{\partial ^2\bar{W}}{\partial J_5\partial J_5} \left( 4\,\jmath ^{5/3}/(\jmath_4\,\jmath_5^2) \mathbf{N}_{0c^{-1}}\,\frac{\partial \jmath_5}{\partial \mathbf{c}}\right) \nonumber \\ &\quad-\, \frac{\partial ^2\bar{W}}{\partial J_4\partial J} \left( 2\,\jmath /\jmath_4 {\mathbf{a}_0}\,\mathbf{c}^{-1}\right) -\, \frac{\partial ^2\bar{W}}{\partial J_5\partial J} \left( 2\,\jmath ^{5/3}/\jmath_4 \mathbf{N}_{0c^{-1}}\,\mathbf{c}^{-1}\right) - \frac{\partial ^2\bar{W}}{\partial J^2}\, \jmath \mathbf{I} \mathbf{c}^{-1}, \end{aligned}$$
(17)

where \(\mathbf{N}_{0c^{-1}} = {\mathbf{a}_0}\cdot \mathbf{c}^{-1}+\mathbf{c}^{-1}\cdot {\mathbf{a}_0}\), \(\mathsf {N}_{0c^{-1}} = {\mathbf{a}_0}:\mathsf {I}_{c^{-1}}+\mathsf {I}_{c^{-1}}:{\mathbf{a}_0}\), while \(\mathsf {I}_{c^{-1}} \equiv {\partial \mathbf{c}^{-1}}/{\partial \mathbf{c}}\), and \(\mathsf {I}\) the symmetric identity 4th-order tensor. Also, the partial derivatives of the modified Eulerian invariants are given by \({\partial \jmath_1}/{\partial \mathbf{c}} = \jmath ^{-2/3}\,\mathbf{I} - \jmath_1\,{1}/{3}\,\,\mathbf{c}^{-1}\), \({\partial \jmath_2}/{\partial \mathbf{c}} = \jmath_1\jmath ^{-2/3}\,\mathbf{I} - \jmath ^{-4/3}\,\mathbf{c} - \jmath_2\,{2}/{3}\,\,\mathbf{c}^{-1}\), and \({\partial \jmath_4}/{\partial \mathbf{c}} = \jmath ^{-2/3}\,{\mathbf{a}_0} - \jmath_4\,{1}/{3}\,\,\mathbf{c}^{-1}\), \({\partial \jmath_5}/{\partial \mathbf{c}} = \jmath ^{-4/3}\,({\partial \imath_5}/{\partial \mathbf{c}}) - \jmath_5\,{2}/{3}\,\mathbf{c}^{-1}\), since \({\partial \imath_1}/{\partial \mathbf{c}} = \mathbf{I}\), \({\partial \imath_2}/{\partial \mathbf{c}} = \imath_1\,\mathbf{I}-\mathbf{c}\), \({\partial \jmath }/{\partial \mathbf{c}} = \jmath \,{1}/{2}\,\,\mathbf{c}^{-1}\), \({\partial \imath_4}/{\partial \mathbf{c}} = {\mathbf{a}_0}\) and \({\partial \imath_5}/{\partial \mathbf{c}} = \hat{\mathbf{n}}_{0}\otimes (\mathbf{c}\cdot \hat{\mathbf{n}}_{0}) + (\hat{\mathbf{n}}_{0}\cdot \mathbf{c})\otimes \hat{\mathbf{n}}_{0}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavourakis, V., Hipwell, J. . & Hawkes, D.J. An Inverse Finite Element u/p-Formulation to Predict the Unloaded State of In Vivo Biological Soft Tissues. Ann Biomed Eng 44, 187–201 (2016). https://doi.org/10.1007/s10439-015-1405-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1405-5

Keywords

Navigation