Skip to main content
Log in

Computational Analysis of the Mechanical Behaviors of Hemiarch and Total Arch Replacements

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Surgery for aortic dissections or aneurysms can be extended into the aortic arch by hemiarch replacement (HAR) or total arch replacement (TAR). Although cardiovascular surgeons have been performing HAR and TAR for decades, the mechanical properties of HAR and TAR are not well understood. This study investigates the mechanical behaviors and stress distributions in HAR and TAR using a hybrid fluid–structure interaction analysis that combines computational fluid dynamics and structural static analysis. Geometrical information on the aortas of 11 subjects was extracted from contrast-enhanced computed tomography (CT) scan data. The CT images were imported into medical image processing software to reconstruct 3D models of the aortas. A 3D finite element model was employed to simulate aortas that receive HAR or TAR. The deformation of the great vessels and the stress distributions at both the vessels and the aortic grafts were calculated. The numerical results revealed that the aortas following TAR exhibited a lower level of stress than those following HAR. Higher stresses may cause arterial wall injury and increase the risk of rupture. Finite element analysis of the aortas and the aortic grafts provides useful information that helps physicians better understand the potential problems that may arise after various surgical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Azadani, A. N., S. Chitsaz, P. B. Matthews, N. Jaussaud, J. Leung, T. Tsinman, L. Ge, and E. E. Tseng. Comparison of mechanical properties of human ascending aorta and aortic sinuses. Ann. Thorac. Surg. 93:87–94, 2012.

    Article  PubMed  Google Scholar 

  2. Beller, C. J., M. R. Labrosse, M. J. Thubrikar, and F. Robicsek. Role of aortic root motion in the pathogenesis of aortic dissection. Circulation 109:763–769, 2004.

    Article  PubMed  Google Scholar 

  3. Beller, C. J., M. R. Labrosse, M. J. Thubrikar, G. Szabo, F. Robicsek, and S. Hagl. Increased aortic wall stress in aortic insufficiency: clinical data and computer model. Eur. J. Cardiothorac. Surg. 27:270–275, 2005.

    Article  PubMed  Google Scholar 

  4. Dur, O., C. G. DeGroff, B. B. Keller, and K. Pekkan. Optimization of inflow waveform phase-difference for minimized total cavopulmonary power loss. J. Biomech. Eng. 132:031012, 2010.

    Article  PubMed  Google Scholar 

  5. Dur, O., S. T. Coskun, K. O. Coskun, D. Frakes, B. L. Kara, and K. Pekkan. Computer aided patient specific coronary artery graft design improvements using CFD coupled shape optimizer. Cardiovasc. Eng. Technol. 2:35–47, 2011.

    Google Scholar 

  6. Fukui, T., T. Matsumoto, T. Tanaka, T. Ohashi, K. Kumagai, H. Akimoto, K. Tabayashi, and M. Sato. In vivo mechanical properties of thoracic aneurysmal wall estimated from in vitro biaxial tensile test. Biomed. Mater. Eng. 15:295–305, 2005.

    PubMed  Google Scholar 

  7. Fung, Y. C., and S. Q. Liu. Determination of the mechanical properties of the different layers of blood vessels in vivo. Proc. Natl. Acad. Sci. USA. 92:2169–2173, 1995.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hirotani, T., T. Nakamichi, M. Munakata, and S. Takeuchi. Routine extended graft replacement for an acute type A aortic dissection and the patency of the residual false channel. Ann. Thorac. Surg. 76:1957–1961, 2003.

    Article  PubMed  Google Scholar 

  9. Jeltsch, M., O. Klass, S. Klein, S. Feuerlein, A. J. Aschoff, H. J. Brambs, and M. H. Hoffmann. Aortic wall thickness assessed by multidetector computed tomography as a predictor of coronary atherosclerosis. Int. J. Cardiovasc. Imaging 25:209–217, 2009.

    Article  PubMed  Google Scholar 

  10. Kazui, T., K. Yamashita, N. Washiyama, H. Terada, A. H. Bashar, T. Suzuki, and K. Ohkura. Impact of an aggressive surgical approach on surgical outcome in type A aortic dissection. Ann. Thorac. Surg. 74:S1844–S1847, 2002.

    Article  PubMed  Google Scholar 

  11. Labrosse, M. R., C. J. Beller, T. Mesana, and J. P. Veinot. Mechanical behavior of human aortas: experiments, material constants and 3-D finite element modeling including residual stress. J. Biomech. 42:996–1004, 2009.

    Article  PubMed  Google Scholar 

  12. Larsson, E., F. Labruto, T. C. Gasser, J. Swedenborg, and R. Hultgren. Analysis of aortic wall stress and rupture risk in patients with abdominal aortic aneurysm with a gender perspective. J. Vasc. Surg. 54:295–299, 2011.

    Article  PubMed  Google Scholar 

  13. Minakawa, M., I. Fukuda, J. Yamazaki, K. Fukui, H. Yanaoka, and T. Inamura. Effect of cannula shape on aortic wall and flow turbulence: hydrodynamic study during extracorporeal circulation in mock thoracic aorta. Artif. Organs 31:880–886, 2007.

    Article  PubMed  Google Scholar 

  14. Nathan, D. P., C. Xu, J. H. Gorman, 3rd, R. M. Fairman, J. E. Bavaria, R. C. Gorman, K. B. Chandran, and B. M. Jackson. Pathogenesis of acute aortic dissection: a finite element stress analysis. Ann. Thorac. Surg. 91:458–464, 2011.

    Article  PubMed  Google Scholar 

  15. Pekkan, K., O. Dur, K. Sundareswaran, K. Kanter, M. Fogel, A. Yoganathan, and A. Undar. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass. J. Biomech. Eng. 130:061012, 2008.

    Article  PubMed  Google Scholar 

  16. Shahcheraghi, N., H. A. Dwyer, A. Y. Cheer, A. I. Barakat, and T. Rutaganira. Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J. Biomech. Eng. 124:378–387, 2002.

    Article  CAS  PubMed  Google Scholar 

  17. Shang, E. K., D. P. Nathan, S. R. Sprinkle, S. C. Vigmostad, R. M. Fairman, J. E. Bavaria, R. C. Gorman, J. H. Gorman, 3rd, K. B. Chandran, and B. M. Jackson. Peak wall stress predicts expansion rate in descending thoracic aortic aneurysms. Ann. Thorac. Surg. 95:593–598, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Speelman, L., E. M. H. Bosboom, G. W. Schurink, F. A. Hellenthal, J. Buth, M. Breeuwer, M. J. Jacobs, and F. N. van de Vosse. Patient-specific AAA wall stress analysis: 99-percentile vs. peak stress. Eur. J. Vasc. Endovasc. Surg. 36:668–676, 2008.

    Article  CAS  PubMed  Google Scholar 

  19. Sundareswaran, K. S., K. Pekkan, L. P. Dasi, K. Whitehead, S. Sharma, K. R. Kanter, M. A. Fogel, and A. P. Yoganathan. The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise. Am. J. Physiol. Heart Circ. Physiol. 295:H2427–H2435, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Takahara, Y., Y. Sudo, K. Mogi, M. Nakayama, and M. Sakurai. Total aortic arch grafting for acute type A dissection: analysis of residual false lumen. Ann. Thorac. Surg. 73:450–454, 2002.

    Article  PubMed  Google Scholar 

  21. Tan, M. E., K. M. Dossche, W. J. Morshuis, J. C. Kelder, F. G. Waanders, and M. A. Schepens. Is extended arch replacement for acute type A aortic dissection an additional risk factor for mortality? Ann. Thorac. Surg. 76:1209–1214, 2003.

    Article  PubMed  Google Scholar 

  22. Urbanski, P. P., A. Siebel, M. Zacher, and R. W. Hacker. Is extended aortic replacement in acute type A dissection justifiable? Ann. Thorac. Surg. 75:525–529, 2003.

    Article  PubMed  Google Scholar 

  23. Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, I. C. Chetter, and P. T. McCollum. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 28:168–176, 2004.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Chang Gung Memorial Hospital (Contract No CMRPD2A0081) for financially supporting this research. Ted Knoy is appreciated for his editorial assistance.

Disclosure

The authors report no conflicts of interest with respect to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Jung Liu.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, KS., Lee, CH., Tsai, FC. et al. Computational Analysis of the Mechanical Behaviors of Hemiarch and Total Arch Replacements. Ann Biomed Eng 43, 2881–2891 (2015). https://doi.org/10.1007/s10439-015-1345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1345-0

Keywords

Navigation