Skip to main content
Log in

Effect of Supercoiling on the Mechanical and Permeability Properties of Model Collagen IV Networks

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Collagen IV networks in the glomerular basement membrane (GBM) are essential for the maintenance and regulation of blood filtration in the kidneys. The GBM contains two different types of collagen IV networks: [α1(IV)]2α2(IV) and α3(IV)α4(IV)α5(IV), the latter of which has a higher number of supercoils (two or more collagens coiling around each other). To investigate the effects of supercoiling on the mechanical and permeability properties of collagen IV networks, we generated model collagen IV networks in the GBM and reconnected them to create different levels of supercoiling. We found that supercoiling greatly increases the stiffness of collagen IV networks but only minimally decreases the permeability. Also, doubling the amount of supercoils in a network had a bigger effect than doubling the stiffness of the supercoils. Our results suggest that the formation of supercoils is a specialized mechanism by the GBM that provides with a network stiff and strong enough to withstand the high hydrostatic pressures of filtration, yet porous enough that filtration is not hindered. Clinically, understanding the effects of supercoiling gives us insight into the mechanisms of GBM failure in some disease states where the normal collagen IV structure is disrupted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

GBM:

Glomerular basement membrane

RVE:

Representative volume element

n i :

Node number

α s :

Smallest angle

M :

Midline

p m :

Percent of length of midline/supercoil ratio

r :

Radius

F :

Force (N)

E :

Elastic modulus (GPa)

E sc :

Supercoil elastic modulus (GPa)

A :

Collagen IV cross-sectional area (nm2)

A sc :

Supercoil cross-sectional area (nm2)

B :

Non-linearity parameter (Unitless)

e G :

Green strain (Unitless)

λ :

Stretch ratio (Unitless)

σ ij :

Cauchy stress tensor (MPa)

V :

Volume of RVE (nm3)

x i :

Boundary nodal position (nm)

Φ :

Collagen IV volume fraction (Unitless)

l :

Length of collagen IV segment (nm)

d ij :

Drag coefficient tensor of single segment (nm−1)

R ij :

Direction cosines matrix (rad)

C ij :

Coefficients matrix of drag (nm)

V n :

Volume of collagen IV network (nm3)

D ij :

Drag coefficient tensor of whole network (nm−2)

k ij :

Darcy permeability (nm2)

References

  1. Abrahamson, D. Development of kidney glomerular endothelial cells and their role in basement membrane assembly. Organogenesis 5:275–287, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Barocas, V. H., K. D. Dorfman, and Y. Segal. A model of strain-dependent glomerular basement membrane maintenance and its potential ramifications in health and disease. J. Biomech. Eng. 134(081006):1–8, 2012.

    Google Scholar 

  3. Bolton, G. R., W. M. Deen, and B. S. Daniels. Assessment of the charge selectivity of glomerular basement membrane using Ficoll sulfate. Am. J. Physiol. 274:F889–F896, 1998.

    CAS  PubMed  Google Scholar 

  4. Brenner, B. M., C. Baylis, and W. M. Deen. Transport of molecules across renal glomerular capillaries. Physiol. Rev. 56:502–534, 1976.

    CAS  PubMed  Google Scholar 

  5. Chandran, P. L., and V. H. Barocas. Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J. Biomech. Eng. 128:259–270, 2006.

    Article  PubMed  Google Scholar 

  6. Chandran, P. L., and V. H. Barocas. Deterministic material-based averaging theory model of collagen gel micromechanics. J. Biomech. Eng. 129:137–147, 2007.

    Article  PubMed  Google Scholar 

  7. Chen, X., F. Wudl, A. Mal, H. Shen, and S. Nutt. New thermally remendable highly cross-linked polymeric materials. Macromolecules 36:1802–1807, 2003.

    Article  CAS  Google Scholar 

  8. Daniels, B., E. Hauser, W. Deen, and T. Hostetter. Glomerular basement membrane: in vitro studies of water and protein permeability. Am. J. Physiol. 262:F919–F926, 1992.

    CAS  PubMed  Google Scholar 

  9. Deen, W. M., M. J. Lazzara, and B. D. Myers. Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol. 281:F579–F596, 2001.

    CAS  PubMed  Google Scholar 

  10. Drummond, J. E., and M. I. Tahir. Laminar viscous flow through regular arrays of parallel solid cylinders. Int. J. Multiph. Flow 10:515–540, 1984.

    Article  CAS  Google Scholar 

  11. Edwards, A., B. S. Daniels, and W. M. Deen. Hindered transport of macromolecules in isolated glomeruli. II. Convection and pressure effects in basement membrane. Biophys. J. 72:214–222, 1997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Endlich, N., and K. Endlich. The challenge and response of podocytes to glomerular hypertension. Semin. Nephrol. 32:327–341, 2012.

    Article  CAS  PubMed  Google Scholar 

  13. Girton, T., T. Oegema, and R. Tranquillo. Exploiting glycation to stiffen and strengthen tissue equivalents for tissue engineering. J. Biomed. Mater. Res. 46:87–92, 1999.

    Article  CAS  PubMed  Google Scholar 

  14. Gunwar, S., F. Ballester, M. E. Noelken, Y. Sado, Y. Ninomiya, and B. G. Hudson. Glomerular basement membrane. Identification of a novel disulfide-cross-linked network of alpha3, alpha4, and alpha5 chains of type IV collagen and its implications for the pathogenesis of Alport syndrome. J. Biol. Chem. 273:8767–8775, 1998.

    Article  CAS  PubMed  Google Scholar 

  15. Gyoneva, L., Y. Segal, K. D. Dorfman, and V. H. Barocas. Mechanical response of wild-type and Alport murine lens capsules during osmotic swelling. Exp. Eye Res. 113:87–91, 2013.

    Article  CAS  PubMed  Google Scholar 

  16. Hadi, M. F., and V. H. Barocas. Microscale fiber network alignment affects macroscale failure behavior in simulated collagen tissue analogs. J. Biomech. Eng. 135(021026):1–8, 2013.

    Google Scholar 

  17. Haraldsson, B., J. Nystrom, and W. Deen. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88:451–487, 2008.

    Article  CAS  PubMed  Google Scholar 

  18. Hironaka, K., H. Makino, Y. Yamasaki, and Z. Ota. Renal basement membranes by ultrahigh resolution scanning electron microscopy. Kidney Int. 43:334–345, 1993.

    Article  CAS  PubMed  Google Scholar 

  19. Hofmann, H., T. Voss, K. Kühn, and J. Engel. Localization of flexible sites in thread-like molecules from electron micrographs: Comparison of interstitial, basement membrane and intima collagens. J. Mol. Biol. 172:325–343, 1984.

    Article  CAS  PubMed  Google Scholar 

  20. Hudson, B. G., R. Kalluri, S. Gunwar, M. Weber, F. Ballester, J. K. Hudson, M. E. Noelken, M. Sarras, W. R. Richardson, J. Saus, et al. The pathogenesis of Alport syndrome involves type IV collagen molecules containing the alpha 3 (IV) chain: evidence from anti-GBM nephritis after renal transplantation. Kidney Int 42:179–187, 1992.

    Article  CAS  PubMed  Google Scholar 

  21. Hudson, B. G., S. T. Reeders, and K. Tryggvason. Type IV collagen: structure, gene organization, and role in human diseases. J. Biol. Chem. 268:26033–26036, 1993.

    CAS  PubMed  Google Scholar 

  22. Hulmes, D. J. S. Building collagen molecules, fibrils, and suprafibrillar structures. J. Struct. Biol. 137:2–10, 2002.

    Article  CAS  PubMed  Google Scholar 

  23. Kalluri, R., C. F. Shield, P. Todd, B. G. Hudson, and E. G. Neilson. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J. Clin. Invest. 99:2470–2478, 1997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kashtan, C. E. Alport syndrome: an inherited disorder of renal, ocular, and cochlear basement membranes. Medicine (Baltimore) 78:338, 1999.

    Article  CAS  Google Scholar 

  25. Kefalides, N. A., and B. Denduchisi. Structural components of epithelial and endothelial basement membranes. Biochemistry 8:4613–4621, 1969.

    Article  CAS  PubMed  Google Scholar 

  26. Khoshnoodi, J., V. Pedchenko, and B. G. Hudson. Mammalian collagen IV. Microsc. Res. Tech. 71:357–370, 2008.

    Article  CAS  PubMed  Google Scholar 

  27. Kim, K., Y. Kim, M. Gubler, M. Steffes, P. Lane, C. Kashtan, J. Crosson, and S. Mauer. Structural–functional relationships in Alport syndrome. J. Am. Soc. Nephrol. 5:1659–1668, 1995.

    CAS  PubMed  Google Scholar 

  28. Knupp, C., and J. M. Squire. A new twist in the collagen story—the type VI segmented supercoil. EMBO J. 20:372–376, 2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Krag, S., and T. T. Andreassen. Mechanical properties of the human lens capsule. Prog. Retin. Eye Res. 22:749–767, 2003.

    Article  PubMed  Google Scholar 

  30. Kriz, W., M. Elger, P. Mundel, and K. V. Lemley. Structure-stabilizing forces in the glomerular tuft. J. Am. Soc. Nephrol. 5:1731–1739, 1995.

    CAS  PubMed  Google Scholar 

  31. Kriz, W., W. Kretzler, A. P. Provoost, and I. Shirato. Stability and leakiness: opposing challenges to the glomerulus. Kidney Int. 49:1570–1574, 1996.

    Article  CAS  PubMed  Google Scholar 

  32. Kühn, K. Basement membrane (type IV) collagen. Matrix Biol. 14:439–445, 1995.

    Article  PubMed  Google Scholar 

  33. Lake, S. P., M. F. Hadi, V. K. Lai, and V. H. Barocas. Mechanics of a fiber network within a non-fibrillar matrix: model and comparison with collagen-agarose co-gels. Ann. Biomed. Eng. 40:2111–2121, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Lee, K., and D. Mooney. Hydrogels for tissue engineering. Chem. Rev. 101:1869–1879, 2001.

    Article  CAS  PubMed  Google Scholar 

  35. Lyubchenko, Y., and L. Shlyakhtenko. Visualization of supercoiled DNA with atomic force microscopy in situ. Proc. Natl. Acad. Sci. USA 94:496–501, 1997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Martinez-Hernandez, A., and P. Amenta. The basement membrane in pathology. Lab. Investig. 48:656, 1983.

    CAS  PubMed  Google Scholar 

  37. Miner, J. H., and J. R. Sanes. Collagen IV alpha 3, alpha 4, and alpha 5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J. Cell Biol. 127:879–891, 1994.

    Article  CAS  PubMed  Google Scholar 

  38. Mizuno, D., C. Tardin, C. F. Schmidt, and F. C. Mackintosh. Nonequilibrium mechanics of active cytoskeletal networks. Science 315:370–373, 2007.

    Article  CAS  PubMed  Google Scholar 

  39. Nachtrab, S., S. C. Kapfer, C. H. Arns, M. Madadi, K. Mecke, and G. E. Schröder-Turk. Morphology and linear-elastic moduli of random network solids. Adv. Mater. 23:2633–2637, 2011.

    Article  CAS  PubMed  Google Scholar 

  40. Orgel, J., T. Irving, A. Miller, and T. Wess. Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. USA 103:9001–9005, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pan, N., and D. Brookstein. Physical properties of twisted structures. II. Industrial yarns, cords, and ropes. J. Appl. Polym. Sci. 83:610–630, 2002.

    Article  CAS  Google Scholar 

  42. Pavenstädt, H., W. Kriz, and M. Kretzler. Cell biology of the glomerular podocyte. Physiol. Rev. 83:253–307, 2003.

    Article  PubMed  Google Scholar 

  43. Ruben, G. C., and P. D. Yurchenco. High resolution platinum-carbon replication of freeze-dried basement membrane. Microsc. Res. Technol. 28:13–28, 1994.

    Article  CAS  Google Scholar 

  44. Sakai, F., and W. Kriz. The structural relationship between mesangial cells and basement membrane of the renal glomerulus. Anat. Embryol. (Berl) 176:373–386, 1987.

    Article  CAS  Google Scholar 

  45. Sangani, A. S., and A. Acrivos. Slow flow past periodic arrays of cylinders with application to heat transfer. Int. J. Multiph. Flow 8:193–206, 1982.

    Article  CAS  Google Scholar 

  46. Srinivasan, M., S. G. M. Uzel, A. Gautieri, S. Keten, and M. J. Buehler. Alport syndrome mutations in type IV tropocollagen alter molecular structure and nanomechanical properties. J. Struct. Biol. 168:503–510, 2009.

    Article  CAS  PubMed  Google Scholar 

  47. Stylianopoulos, T., A. Yeckel, J. J. Derby, X.-J. Luo, M. S. Shephard, E. A. Sander, and V. H. Barocas. Permeability calculations in three-dimensional isotropic and oriented fiber networks. Phys. Fluids 20(123601):2008, 1994.

    Google Scholar 

  48. Suleiman, H., L. Zhang, R. Roth, J. E. Heuser, J. H. Miner, A. S. Shaw, and A. Dani. Nanoscale protein architecture of the kidney glomerular basement membrane. Elife 2:01149, 2013.

    Google Scholar 

  49. Welling, L., M. Zupka, and D. Wellin. Mechanical properties of basement membrane. News Physiol. Sci. 10:30–35, 1995.

    Google Scholar 

  50. Wyss, H. M., J. M. Henderson, F. J. Byfield, L. A. Bruggeman, Y. Ding, C. Huang, J. H. Suh, T. Franke, E. Mele, M. R. Pollak, J. H. Miner, P. A. Janmey, D. A. Weitz, and R. T. Miller. Biophysical properties of normal and diseased renal glomeruli. Am. J. Physiol. Cell Physiol. 300:C397–C405, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Yurchenco, P. D., and G. C. Ruben. Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J. Cell Biol. 105:2559–2568, 1987.

    Article  CAS  PubMed  Google Scholar 

  52. Yurchenco, P. D., and G. C. Ruben. Type IV collagen lateral associations in the EHS tumor matrix. Comparison with amniotic and in vitro networks. Am. J. Pathol. 132:278–291, 1988.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Yurchenco, P., and J. Schittny. Molecular architecture of basement membranes. FASEB J. 4:1577–1590, 1990.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was carried out in part using computing resources at the University of Minnesota Supercomputing Institute and was supported by the National Science Foundation Graduate Research Fellowship and Grant No. NSF CMMI 1300649. This work was also supported by resources and the use of facilities at the Minneapolis VA Health Care System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor H. Barocas.

Additional information

Associate Editor Gerhard A. Holzapfel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyoneva, L., Segal, Y., Dorfman, K.D. et al. Effect of Supercoiling on the Mechanical and Permeability Properties of Model Collagen IV Networks. Ann Biomed Eng 43, 1695–1705 (2015). https://doi.org/10.1007/s10439-014-1187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1187-1

Keywords

Navigation