Skip to main content

Advertisement

Log in

Probabilistic Evaluation of Predicted Force Sensitivity to Muscle Attachment and Glenohumeral Stability Uncertainty

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A major benefit of computational modeling in biomechanics research is its ability to estimate internal muscular demands given limited input information. However, several assumptions regarding model parameters and constraints may influence model outputs. This research evaluated the influence of model parameter variability, specifically muscle attachment locations and glenohumeral stability thresholds, on predicted rotator cuff muscle force during internal and external axial humeral rotation tasks. Additionally, relative sensitivity factors assessed which parameters were more contributory to output variability. Modest model parameter variation resulted in considerable variability in predicted force, with origin-insertion locations being particularly influential. Specifically, the scapula attachment site of the subscapularis muscle was important for modulating predicted force, with sensitivity factors ranging from α = 0.2 to 0.7 in a neutral position. The largest variability in predicted forces was present for the subscapularis muscle, with average differences of 33.0 ± 9.6% of normalized muscle force (1–99% CI), and a maximal difference of 51% in neutral exertions. Infraspinatus and supraspinatus muscles elicited maximal differences of 15.0 and 20.6%, respectively, between confidence limits. Overall, origin and insertion locations were most influential and thus incorporating geometric variation in the prediction of rotator cuff muscle forces may provide more representative population estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Blajer, W., A. Czaplicki, K. Dzlewiecki, and Z. Mazur. Influence of selected modeling and computational issues on muscle force estimates. Multibody Syst. Dyn. 24(4):473–492, 2010.

    Article  Google Scholar 

  2. Brand, R. A., D. R. Pedersen, and J. A. Friederich. The sensitivity of muscle force predictions to changes in physiological cross-sectional area. J. Biomech. 19(8):589–596, 1986.

    Article  CAS  PubMed  Google Scholar 

  3. Brookham, R. L., E. E. Middlebrook, T. J. Grewal, and C. R. Dickerson. The utility of an empirically derived co-activation ratio for muscle force prediction through optimization. J. Biomech. 44(8):1582–1587, 2011.

    Article  PubMed  Google Scholar 

  4. Clauser, C. W., J. T. McConville, and J. W. Young. Weight, volume and center of mass of segments of the human body. AMRL-TR-69-70, Aerospace Medical Research Laboratories, Dayton, OH, 1969.

  5. Crowninshield, R. D., and R. A. Brand. A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14(11):793–801, 1981.

    Article  CAS  PubMed  Google Scholar 

  6. Delp, S. L., and W. Maloney. Effects of hip center location on the moment-generating capacity of the muscles. J. Biomech. 26(4/5):485–499, 1993.

    Article  CAS  PubMed  Google Scholar 

  7. Dickerson, C. R. A biomechanical analysis of shoulder loading and effort during load transfer tasks. PhD Dissertation, University of Michigan, Ann Arbor, MI, 2005.

  8. Dickerson, C. R., D. B. Chaffin, and R. E. Hughes. A mathematical musculoskeletal shoulder model for proactive ergonomic analysis. Comput. Methods Biomech. Biomed. Eng. 10(6):389–400, 2007.

    Article  Google Scholar 

  9. Dickerson, C. R., R. E. Hughes, and D. B. Chaffin. Experimental evaluation of a computational shoulder musculoskeletal model. Clin. Biomech. 23(7):886–894, 2008.

    Article  Google Scholar 

  10. Dul, J. A biomechanical model to quantify shoulder load at the work place. Clin. Biomech. 3(3):124–128, 1988.

    Article  CAS  Google Scholar 

  11. Dul, J., M. A. Townsend, R. Shiavi, and G. E. Johnson. Muscular synergism—I. On criteria for load sharing between synergistic muscles. J. Biomech. 17(9):663–673, 1984.

    Article  CAS  PubMed  Google Scholar 

  12. Easley, S. K., S. Pal, P. R. Tomaszewski, A. J. Petrella, P. J. Rullkoetter, and P. J. Laz. Finite element-based probabilistic analysis tool for orthopaedic applications. Comput. Methods Programs Biomed. 85(1):32–40, 2007.

    Article  PubMed  Google Scholar 

  13. Flieg, N. G., C. J. Gatti, L. Case Doro, J. E. Langenderfer, J. E. Carpenter, and R. E. Hughes. A stochastic analysis of glenoid inclination angle and superior migration of the humeral head. Clin. Biomech. 23(5):554–561, 2008.

    Article  Google Scholar 

  14. Gatti, C. J., C. R. Dickerson, E. K. Chadwick, A. G. Mell, and R. E. Hughes. Comparison of model-predicted and measured moment arms for the rotator cuff muscles. Clin. Biomech. 22(6):639–644, 2007.

    Article  Google Scholar 

  15. Haldar, A., and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. New York, NY: Wiley, 2000.

    Google Scholar 

  16. Herzog, W. Sensitivity of muscle force estimations to changes in muscle input parameters using nonlinear optimization approaches. J. Biomech. Eng. 114(2):267–268, 1992.

    Article  CAS  PubMed  Google Scholar 

  17. Hogfors, C., D. Karlsson, and B. Peterson. Structure and internal consistency of a shoulder model. J. Biomech. 28(7):767–777, 1995.

    Article  CAS  PubMed  Google Scholar 

  18. Hogfors, C., B. Peterson, G. Sigholm, and P. Herberts. Biomechanical model of the human shoulder joint—II. The shoulder rhythm. J. Biomech. 24(8):699–709, 1991.

    Article  CAS  PubMed  Google Scholar 

  19. Hogfors, C., G. Sigholm, and P. Herberts. Biomechanical model of the human shoulder—I. Elements. J. Biomech. 20(2):157–166, 1987.

    Article  CAS  PubMed  Google Scholar 

  20. Hughes, R. E., and K. N. An. Monte Carlo simulation of a planar shoulder model. Med. Biol. Eng. Comput. 35(5):544–548, 1997.

    Article  CAS  PubMed  Google Scholar 

  21. Karlsson, D., and B. Peterson. Towards a model for force predictions in the human shoulder. J. Biomech. 25(2):189–199, 1992.

    Article  CAS  PubMed  Google Scholar 

  22. King, A. I., D. C. Viano, N. Mizeres, and J. D. States. Humanitarian benefits of cadaver research on injury prevention. J. Trauma 38(4):564–569, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. Kuechle, D. K., S. R. Newman, E. Itoi, G. L. Niebur, B. F. Morrey, and K. N. An. The relevance of moment arm of the shoulder muscles with respect to axial rotation of the glenohumeral joint in four positions. Clin. Biomech. 15(5):329–332, 2000.

    Article  Google Scholar 

  24. Langenderfer, J. E., J. E. Carpenter, M. E. Johnson, K. N. An, and R. E. Hughes. A probabilistic model of glenohumeral external rotation strength for healthy normal and rotator cuff tear cases. Ann. Biomed. Eng. 34(3):465–476, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Langenderfer, J. E., P. J. Laz, A. J. Petrella, and P. J. Rullkoetter. An efficient probabilistic methodology for incorporating uncertainty in body segment parameters and anatomical landmarks in joint loadings estimated from inverse dynamics. J. Biomech. Eng. 130(1):014502, 2008.

    Article  PubMed  Google Scholar 

  26. Langenderfer, J. E., P. J. Rullkoetter, A. G. Mell, and P. J. Laz. A multi-subject evaluation of uncertainty in anatomical landmark location on shoulder kinematic description. Comput. Methods Biomech. Biomed. Eng. 12(2):211–216, 2009.

    Article  Google Scholar 

  27. Laz, P. J., and M. Browne. A review of probabilistic analysis in orthopaedic biomechanics. Proc. Inst. Mech. Eng. [H] 224(H8):927–943, 2010.

    Article  CAS  Google Scholar 

  28. Lewandowski, A. Issues in model validation. International Institute for Applied Systems Analysis, RR(82-37): 1–11, 1982.

  29. Lippitt, S., and F. Matsen. Mechanisms of glenohumeral joint stability. Clin. Orthopaed. Relat. Res. 291:20–28, 1993.

    Google Scholar 

  30. Makhsous, M. Improvements, validation and adaptation of a shoulder model. PhD Dissertation, Chalmers University of Technology, Goteborg, Sweden, 1999.

  31. Michener, L. A., P. W. McClure, and A. R. Karduna. Anatomical and biomechanical mechanisms of subacromial impingement syndrome. Clin. Biomech. 18:369–379, 2003.

    Article  Google Scholar 

  32. Murray, W. M., T. S. Buchanan, and S. L. Delp. Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions. J. Biomech. 35(1):19–26, 2002.

    Article  PubMed  Google Scholar 

  33. NESSUS Theoretical Manual Version 7.0. Southwest Research Institute, San Antonio, TX, 2001.

  34. Nussbaum, M. A., D. B. Chaffin, and C. J. Rechtien. Muscle lines-of-action affect predicted forces in optimization-based spine muscle modelling. J. Biomech. 28(4):401–409, 1995.

    Article  CAS  PubMed  Google Scholar 

  35. Nussbaum, M. A., and X. Zhang. Heuristics for locating upper extremity joint centres from a reduced set of surface markers. Hum. Movement Sci. 19(5):797–816, 2000.

    Article  Google Scholar 

  36. Pal, S., J. E. Langenderfer, J. Q. Stowe, P. J. Laz, A. J. Petrella, and P. J. Rullkoetter. Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability. Ann. Biomed. Eng. 35(9):1632–1642, 2007.

    Article  PubMed  Google Scholar 

  37. Phadke, V., P. R. Camargo, and P. M. Ludewig. Scapular and rotator cuff muscle activity during arm elevation: a review of normal function and alterations with shoulder impingement. Rev. Bras. Fisioter. 13(1):1–9, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Raikova, R. T., and B. I. Prilutsky. Sensitivity of predicted muscle forces to parameters of the optimization-based human leg model revealed by analytical and numerical analyses. J. Biomech. 34(10):1243–1255, 2001.

    Article  CAS  PubMed  Google Scholar 

  39. van der Helm, F. C. T. A finite element musculoskeletal model of the shoulder mechanism. J. Biomech. 27(5):551–569, 1994.

    Article  PubMed  Google Scholar 

  40. Wu, Y. T., H. R. Millwater, and T. A. Cruse. Advanced probabilistic structural analysis method for implicit performance functions. AIAA J. 28(9):1663–1669, 1990.

    Article  Google Scholar 

  41. Yanagawa, T., C. J. Goodwin, and K. B. Shelburne. Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction. J. Biomech. Eng. 130(2):021024-1–021024-9, 2008.

    Article  Google Scholar 

  42. Zatsiorsky, V., and V. Seluyanov. Estimation of the mass and inertia characteristics of the human body by means of the best predictive regression equations. Biomechanics IX-B, Human Kinetics, 1993.

Download references

Acknowledgments

Partial project support came from an individual discovery grant from the Canadian Natural Sciences and Engineering Research Council held by Dr. Clark Dickerson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark R. Dickerson.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopp-Hurley, J.N., Langenderfer, J.E. & Dickerson, C.R. Probabilistic Evaluation of Predicted Force Sensitivity to Muscle Attachment and Glenohumeral Stability Uncertainty. Ann Biomed Eng 42, 1867–1879 (2014). https://doi.org/10.1007/s10439-014-1035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1035-3

Keywords

Navigation