Skip to main content

Biomechanics of Human Joints

  • Chapter
  • First Online:
Orthopaedic Biomechanics in Sports Medicine
  • 1845 Accesses

Abstract

The biomechanics of human joints is complex and play a fundamental role in human locomotion, joint stability, and support. The human joint inherent structure and articulating cartilages surface are driven by muscles forces that react to the kinematics preserving stability by optimizing the power capacity needed to achieve a given task. For example, a description of the shoulder joint shows an articulating surface composed of the proximal humerus and the glenoid. The humeral head rotation is constrained by a structure composed of ligaments, tendons joining to form a capsule, the fibro cartilaginous labrum, which jointly provide the static-dynamic stability needed to the shoulder joint. The contribution of the rotator cuff muscles provides the mechanism and support to maintain natural motion to the joint providing a combined force effort to withstand torques, overload, and excursions of the muscles. Their location and orientation around the glenohumeral head form a mapping function into maintaining a certain work capacity that is optimum to the joint. Excess load, cyclic loading, and fatigue will increase the risk of tear and injury to the rotator cuff and connective ligaments around the joint. Any disruption to the joint connective structure causes restrictive motions to the joint often accompanied by pain. When and how the joint rotator cuff repair takes place requires measurable clinical outcomes which are still being investigated and evaluated as new biologics are making headways and research is providing an insight into new possibilities to help understand the shoulder joint complexity and its function.

This chapter provides an overview into understanding the mechanics of the human joint and shoulder joint in particular, the contribution of the musculoskeletal force structure to the kinematics and kinetics of the joint. It also discusses steps in developing 3D shoulder models based on CT scans images needed for both the analysis and design of patient-specific implants. This chapter also discusses the Finite Element research conducted in previous studies in relation to the shoulder, rotator cuff and their future use in simulation of surgical procedures used to make assessments of outcome driven procedures. Practical references are used to highlight the importance of the joint kinematics, stability, and the various factors that can adversely affect the glenohumeral joint during various abduction and rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raphael BS, Dines JS, Warren RF, Figgie M, Craig EV, Fealy S, Dines DM. Symptomatic Glenoid loosening complicating total shoulder arthroplasty. HSS J. 2010 Feb;6(1):52–6. https://doi.org/10.1007/s11420-009-9148-1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jeffrey T. Abildgaard, Jared C. Bentley, Richard J. Hawkins, John M. Tokish “Arthroscopic removal of a loose polyethylene Glenoid component with bone grafting and patch augmentation for Glenoid Osseous defect” Arthrosc Tech. 2017 Jun; 6(3): e529–e535. Published online 2017 May 1. doi: 10.1016.

    Google Scholar 

  3. Albert S, Gee O, Angeline ME, Dines JS, Dines DM. Shoulder instability after total shoulder arthroplasty: a case of arthroscopic repair. HSS J. 2014;10(1):88–91. https://doi.org/10.1007/s11420-013-9373-5.

    Article  Google Scholar 

  4. Jancuska J, Matthews J, Miller T, Kluczynski MA, Bisson LJ. A systematic summary of systematic reviews on the topic of the rotator cuff. Orthop J Sports Med. 2018;6(9):2325967118797891. https://doi.org/10.1177/2325967118797891.

    Article  PubMed  Google Scholar 

  5. Rossi LA, Rodeo SA, Chahla J, Ranalletta M. Current concepts in rotator cuff repair techniques: biomechanical, functional, and structural outcomes. Orthop J Sports Med. 201;7(9):2325967119868674. https://doi.org/10.1177/2325967119868674.

  6. Nitin B. Jain, Ken Yamaguchi “The contribution of reverse shoulder arthroplasty to utilization of primary shoulder arthroplasty “J Shoulder Elbow Surg. Published in final edited form as: J Shoulder Elbow Surg. 2014 Dec; 23(12): 1905–1912. Published online 2014 Oct 7. doi: https://doi.org/10.1016/j.jse.2014.06.055

  7. Schoch BS, King JJ, Wright TW, Vigan M, Werthel JD. Defining the tipping point for primary shoulder arthroplasty. JSES Open Access. 2019;3(4):273–7. https://doi.org/10.1016/j.jses.2019.09.009.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pia C ten Voorde, Jeppe V Rasmussen, Bo S Olsen, Stig Brorson Resurfacing shoulder arthroplasty for the treatment of severe rheumatoid arthritis: Outcome in 167 patients from the Danish Shoulder Registry. Acta Orthop. 2015; 86(3): 293–297. Published online 2015 May 13. doi: https://doi.org/10.3109/17453674.2015.1018761

  9. Levy DM, Abrams GD, Harris JD, Bach BR Jr, Nicholson GP, Romeo AA. Rotator cuff tears after total shoulder arthroplasty in primary osteoarthritis: A systematic review. Int J Shoulder Surg. 2016;10(2):78–84. https://doi.org/10.4103/0973-6042.180720.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Asadi Nikooyan A, Veeger HEJ, Chadwick EKJ, et al. Development of a comprehensive musculoskeletal model of the shoulder and elbow. Med Biol Eng Comput. 2011;49:1425–35. https://doi.org/10.1007/s11517-011-0839-7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Praagman M, Chadwick EKJ, van der Helm FCT, et al. The relationship between two different mechanical cost functions and muscle oxygen consumption. J Biomech. 2006;39(4):758–65.

    Article  CAS  Google Scholar 

  12. Makhsous M, Hogfors C, Siemien’ski A, et al. Total shoulder and relative muscle strength in the scapular plane. J Biomech. 1999;32(11):1213–20.

    Article  CAS  Google Scholar 

  13. Hogfors C, Peterson B, Sigholm G, et al. Biomechanical model of the human shoulder joint—II. The shoulder rhythm. J Biomech. 1991;24(8):699–709.

    Article  CAS  Google Scholar 

  14. Kontaxis A, Johnson GR. The biomechanics of reverse anatomy shoulder replacement-a modelling study. Clin Biomech (Bristol, Avon). 2009;24:254–60.

    Article  CAS  Google Scholar 

  15. Flores-Hernandez C, Eskinazi I, Hoenecke HR, D'Lima DD. Scapulothoracic rhythm affects glenohumeral joint force. JSES Open Access. 2019;3(2):77–82. https://doi.org/10.1016/j.jses.2019.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mansouri M, Reinbolt JA. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB. J Biomech. 2012;45(8):1517–21. https://doi.org/10.1016/j.jbiomech.2012.03.016.

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Duca CJ, Forrest WJ. Force analysis of individual muscles acting simultaneously on the shoulder joint during isometric abduction. J Biomech. 1973;6(4):385–93. https://doi.org/10.1016/0021-9290(73)90098-5.

    Article  PubMed  Google Scholar 

  18. Högfors C, Sigholm G, Herberts P. Biomechanical model of the human shoulder--I. Elements J Biomech. 1987;20(2):157–66.

    Article  Google Scholar 

  19. Andrews JR, Carson WG, Mcleod WD. Glenoid labrum tears related to the long head of the biceps. Am J Sports Med. 1985 Sep-Oct;13(5):337–41.

    Article  CAS  Google Scholar 

  20. Karlsson D, Peterson B. Towards a model for force predictions in the human shoulder. J Biomech. 1992;25(2):189–99.

    Article  CAS  Google Scholar 

  21. der Helm V. A finite element musculoskeletal model of the shoulder mechanism. J Biomech. 1994;27(5):551–69. https://doi.org/10.1016/0021-9290(94)90065-5.

    Article  PubMed  Google Scholar 

  22. Nikooyan AA, Veeger HE, Westerhoff P, Graichen F, Bergmann G, van der Helm FC. Validation of the Delft shoulder and elbow model using in-vivo glenohumeral joint contact forces. J Biomech. 2010;43(15):3007–14. https://doi.org/10.1016/j.jbiomech.2010.06.015.

    Article  CAS  PubMed  Google Scholar 

  23. Gabriel MT, Wong EK, Woo SL, Yagi M, Debski RE. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res. 2004;22(1):85–9. https://doi.org/10.1016/S0736-0266(03)00133-5.

    Article  PubMed  Google Scholar 

  24. Huang CY, Wang VM, Pawluk RJ, et al. Inhomogeneous mechanical behavior of the human supraspinatus tendon under uniaxial loading. J Orthop Res. 2005;23(4):924–30. https://doi.org/10.1016/j.orthres.2004.02.016.

    Article  PubMed  Google Scholar 

  25. Holzbaur KR, Delp SL, Gold GE, Murray WM. Moment-generating capacity of upper limb muscles in healthy adults. J Biomech. 2007;40(11):2442–9. https://doi.org/10.1016/j.jbiomech.2006.11.013.

    Article  PubMed  Google Scholar 

  26. Ackland DC, Pandy MG. Moment arms of the shoulder muscles during axial rotation. J Orthop Res. 2011;29(5):658–67. https://doi.org/10.1002/jor.21269.

    Article  PubMed  Google Scholar 

  27. Hammond G, Tibone JE, McGarry MH, et al. Biomechanical comparison of anatomic humeral head resur-facing and hemiarthroplasty in functional glenohumeralpositions. J Bone Joint Surg. 2012;94:68–76.

    Article  Google Scholar 

  28. Browe DP, Voycheck CA, McMahon PJ, Debski RE. Changes to the mechanical properties of the glenohumeral capsule during anterior dislocation. J Biomech. 2012;45(11):2028–34. https://doi.org/10.1016/j.jbiomech.2013.10.040.

    Article  Google Scholar 

  29. Quental C, Folgado J, Ambrósio J, Monteiro J. A new shoulder model with a biologically inspired glenohumeral joint. Med Eng Phys. 2016; https://doi.org/10.1016/j.medengphy.2016.06.012.

  30. Gunther SB, Lynch TL. Total shoulder replacement surgery with custom glenoid implants for severe bone deficiency. J Shoulder Elb Surg. 2012;21(5):675–84.

    Article  Google Scholar 

  31. Wilson A, Lichtwark G. The anatomical arrangement of muscle and tendon enhances limb versatility and locomotor performance. Phil Trans R Soc B. 2011;366:1540–53. https://doi.org/10.1098/rstb.2010.0361.

    Article  PubMed  PubMed Central  Google Scholar 

  32. McCausland C, Sawyer E, Eovaldi BJ, et al. Anatomy, shoulder and upper limb, shoulder muscles. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534836/

  33. Altintas B, Bradley H, Logan C, Delvecchio B, Anderson N, Millett PJ. Rehabilitation following subscapularis tendon. Repair. Int J Sports Phys Ther. 2019;14(2):318–32.

    Article  Google Scholar 

  34. Werthela J-D, Bertelli J, Elhassana BT. Shoulder function in patients with deltoid paralysis and intact rotator cuff. Orthop Traumatol Surg Res. 2017;103:869–73.

    Article  Google Scholar 

  35. Escamilla RF, Andrews JR. Shoulder muscle recruitment patterns and related biomechanics during upper extremity sports. Sports Med. 2009;39(7):569–90.

    Article  Google Scholar 

  36. Di Giacomo G, Piscitelli L, Pugliese M. The role of bone in glenohumeral stability. EFORT Open Rev. 2018;3(12):632–640. doi: https://doi.org/10.1302/2058-5241.3.180028.

  37. Soslowsky LJ, Thomopoulos S, Tun S, Flanagan CL, Keefer CC, Mastaw J, Carpenter JE. Overuse activity injures the supraspinatus tendon in an animal model: A histologic and biomechanical study. J Shoulder Elb Surg. 2000;9:79–84.

    Article  CAS  Google Scholar 

  38. Szabo I, Boileau P, Walch G. The proximal biceps as a pain generator and results of tenotomy. Sport Med Arthrosc. 2008;16:180–6. https://doi.org/10.1097/JSA.0b013e3181824f1e.

    Article  Google Scholar 

  39. Harryman DT 2nd, Sidles JA, Clark JM, McQuade KJ, Gibb TD, Matsen FA 3rd. Translation of the humeral head on the glenoid with passive glenohumeral motion. J Bone Joint Surg Am. 1990;72(9):1334–43.

    Article  Google Scholar 

  40. Zheng M, Zou Z, Bartolo PJ, Peach C, Ren L. Finite element models of the human shoulder complex: a review of their clinical implications and modelling techniques. Int J Numer Method Biomed Eng. 2017;33(2):e02777. https://doi.org/10.1002/cnm.2777.

    Article  Google Scholar 

  41. Terrier A, Reist A, Vogel A, Farron A. Effect of supraspinatus deficiency on humerus translation and glenohumeral contact force during abduction. Clin Biomech (Bristol, Avon). 2007;22(6):645–51. https://doi.org/10.1016/j.clinbiomech.2007.01.015.

    Article  Google Scholar 

  42. Walia P, Miniaci A, Jones MH, Fening SD. Theoretical model of the effect of combined glenohumeral bone defects on anterior shoulder instability: a finite element approach. J Orthop Res. 2013;31(4):601–7. https://doi.org/10.1002/jor.22267.

    Article  PubMed  Google Scholar 

  43. Zheng M, et al. Finite element models of the human shoulder complex: a review of their clinical implications and modelling techniques. Int J Numer Methods Biomed Eng. 2017;33(2):e02777. https://doi.org/10.1002/cnm.2777.

    Article  Google Scholar 

  44. Luo ZP, Hsu HC, Grabowski JJ, Morrey BF, An KN. Mechanical environment associated with rotator cuff tears. J Shoulder Elb Surg. 1998;7(6):616–20. https://doi.org/10.1016/S1058-2746(98)90010-6.

    Article  CAS  Google Scholar 

  45. Wakabayashi I, Itoi E, Sano H, Shibuya Y, Sashi R, Minagawa H, Kobayashi M. Mechanical environment of the supraspinatus tendon: a two-dimensional finite element model analysis. J Shoulder Elb Surg. 2003;12(6):612–7. https://doi.org/10.1016/s1058274603002143.

    Article  Google Scholar 

  46. Sano H, Wakabayashi I, Itoi E. Stress distribution in the supraspinatus tendon with partial-thickness tears: an analysis using two-dimensional finite element model. J Shoulder Elb Surg. 2006;15(1):100–5. https://doi.org/10.1016/j.jse.2005.04.003.

    Article  Google Scholar 

  47. Seki N, Itoi E, Shibuya Y, Wakabayashi I, Sano H, Sashi R, Minagawa H, Yamamoto N, Abe H, Kikuchi K, Okada K, Shimada Y. Mechanical environment of the supraspinatus tendon: three-dimensional finite element model analysis. J Orthop Sci. 2008;13(4):348–53. https://doi.org/10.1007/s00776-008-1240-8.

    Article  PubMed  Google Scholar 

  48. Adams C, Baldwin M, Laz P, Rullkoetter P, Langenderfer J. Effects of rotator cuff tears on muscle moment arms: a computational study. J Biomech. 2007;40(15):3373–80. https://doi.org/10.1016/j.jbiomech.2007.05.017.

    Article  PubMed  Google Scholar 

  49. Inoue A, Chosa E, Goto K, Tajima N. Nonlinear stress analysis of the supraspinatus tendon using three-dimensional finite element analysis. Knee Surg Sports Traumatol Arthrosc. 2013;21(5):1151–7. https://doi.org/10.1007/s00167-012-2008-4.

    Article  PubMed  Google Scholar 

  50. https://www.materialise.com/

  51. Rosen DP, Jiang J. A comparison of hyperelastic constitutive models applicable to shear wave elastography (SWE) data in tissue-mimicking materials. Phys Med Biol. 2019;64(5):055014. https://doi.org/10.1088/1361-6560/ab0137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amirouche, F., Koh, J. (2021). Biomechanics of Human Joints. In: Koh, J., Zaffagnini, S., Kuroda, R., Longo, U.G., Amirouche, F. (eds) Orthopaedic Biomechanics in Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-81549-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81549-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81548-6

  • Online ISBN: 978-3-030-81549-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics