Skip to main content
Log in

From In Vitro to In Situ Tissue Engineering

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In vitro tissue engineering enables the fabrication of functional tissues for tissue replacement. In addition, it allows us to build useful physiological and pathological models for mechanistic studies. However, the translation of in vitro tissue engineering into clinical therapies presents a number of technical and regulatory challenges. It is possible to circumvent the complexity of developing functional tissues in vitro by taking an in situ tissue engineering approach that uses the body as a native bioreactor to regenerate tissues. This approach harnesses the innate regenerative potential of the body and directs the appropriate cells to the site of injury. This review surveys the biomaterial-, cell-, and chemical factor-based strategies to engineer tissue in vitro and in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Allaire, E., P. Bruneval, C. Mandet, J.-P. Becquemin, and J.-B. Michel. The immunogenicity of the extracellular matrix in arterial xenografts. Surgery 122:73–81, 1997.

    Article  CAS  PubMed  Google Scholar 

  2. Atala, A., S. B. Bauer, S. Soker, J. J. Yoo, and A. B. Retik. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246, 2006.

    Article  PubMed  Google Scholar 

  3. Babensee, J. E., J. M. Anderson, L. V. McIntire, and A. G. Mikos. Host response to tissue engineered devices. Adv. Drug Del. Rev. 33:111–139, 1998.

    Article  CAS  Google Scholar 

  4. Babensee, J. E., L. V. McIntire, and A. G. Mikos. Growth factor delivery for tissue engineering. Pharm. Res. 17:497–504, 2000.

    Article  CAS  PubMed  Google Scholar 

  5. Balachandran, K., S. Konduri, P. Sucosky, H. Jo, and A. P. Yoganathan. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34:1655–1665, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Beckstead, B. L., D. M. Santosa, and C. M. Giachelli. Mimicking cell–cell interactions at the biomaterial–cell interface for control of stem cell differentiation. J. Biomed. Mater. Res. A. 79:94–103, 2006.

    Article  PubMed  Google Scholar 

  7. Billingham, R., and J. Reynolds. Transplantation studies on sheets of pure epidermal epithelium and on epidermal cell suspensions. Br. J. Plast. Surg. 5:25–36, 1952.

    Article  CAS  PubMed  Google Scholar 

  8. Brown, B. N., R. Londono, S. Tottey, L. Zhang, K. A. Kukla, M. T. Wolf, K. A. Daly, J. E. Reing, and S. F. Badylak. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8:978–987, 2012.

    Article  CAS  PubMed  Google Scholar 

  9. Brown, B. N., J. E. Valentin, A. M. Stewart-Akers, G. P. McCabe, and S. F. Badylak. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30:1482–1491, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Burczak, K., E. Gamian, and A. Kochman. Long-term in vivo performance and biocompatibility of poly(vinyl alcohol) hydrogel macrocapsules for hybrid-type artificial pancreas. Biomaterials 17:2351–2356, 1996.

    Article  CAS  PubMed  Google Scholar 

  11. Cai, S., Y. Liu, X. Zheng Shu, and G. D. Prestwich. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26:6054–6067, 2005.

    Article  CAS  PubMed  Google Scholar 

  12. Cao, H., K. Mchugh, S. Y. Chew, and J. M. Anderson. The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J. Biomed. Mater. Res. Part A. 93:1151–1159, 2010.

    Google Scholar 

  13. Chen, X., A. S. Aledia, C. M. Ghajar, C. K. Griffith, A. J. Putnam, C. C. Hughes, and S. C. George. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. Part A. 15:1363–1371, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chen, L., Z. He, B. Chen, M. Yang, Y. Zhao, W. Sun, Z. Xiao, J. Zhang, and J. Dai. Loading of VEGF to the heparin cross-linked demineralized bone matrix improves vascularization of the scaffold. J. Mater. Sci. Mater. Med. 21:309–317, 2010.

    Article  CAS  PubMed  Google Scholar 

  15. Chew, S. Y., J. Wen, E. K. Yim, and K. W. Leong. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6:2017–2024, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Christensen, L. H., V. B. Breiting, A. Aasted, A. Jørgensen, and I. Kebuladze. Long-term effects of polyacrylamide hydrogel on human breast tissue. Plast. Reconstr. Surg. 111:1883–1890, 2003.

    Article  PubMed  Google Scholar 

  17. Crapo, P. M., T. W. Gilbert, and S. F. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. DeForest, C. A., and K. S. Anseth. Advances in bioactive hydrogels to probe and direct cell fate. Annu. Rev. Chem. Biomol. Eng. 3:421–444, 2012.

    Article  CAS  PubMed  Google Scholar 

  19. Elcin, Y. M., V. Dixit, and G. Gitnick. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif. Organs 25:558–565, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Ellis, A. J., R. D. Hughes, J. A. Wendon, J. Dunne, P. G. Langley, J. H. Kelly, G. T. Gislason, N. L. Sussman, and R. Williams. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 24:1446–1451, 1996.

    Article  CAS  PubMed  Google Scholar 

  21. Engler, A. J., Berry M. F., Sweeney, H. L., Discher, D. In: Biomedical Engineering Society Annual Fall Meeting. Baltimore, MD, 2005.

  22. Fischbach, C., and D. J. Mooney. Polymers for pro- and anti-angiogenic therapy. Biomaterials 28:2069–2076, 2007.

    Article  CAS  PubMed  Google Scholar 

  23. Habibovic, P., U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29:944–953, 2008.

    Article  CAS  PubMed  Google Scholar 

  24. Henry, T. D., K. Rocha-Singh, J. M. Isner, D. J. Kereiakes, F. J. Giordano, M. Simons, D. W. Losordo, R. C. Hendel, R. O. Bonow, S. M. Eppler, T. F. Zioncheck, E. B. Holmgren, and E. R. McCluskey. Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am. Heart J. 142:872–880, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Hoerstrup, S. P., R. Sodian, J. S. Sperling, J. P. Vacanti, and J. E. Mayer, Jr. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng. 6:75–79, 2000.

    Article  CAS  PubMed  Google Scholar 

  26. Holmes, T. C. Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol. 20:16–21, 2002.

    Article  CAS  PubMed  Google Scholar 

  27. Huang, Q., J. Goh, D. Hutmacher, and E. H. Lee. In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor β 1 and the potential for in situ chondrogenesis. Tissue Eng. 8:469–482, 2002.

    Article  CAS  PubMed  Google Scholar 

  28. Huang, N. F., S. Patel, R. G. Thakar, J. Wu, B. S. Hsiao, B. Chu, R. J. Lee, and S. Li. Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett. 6:537–542, 2006.

    Article  CAS  PubMed  Google Scholar 

  29. Huh, D., B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber. Reconstituting organ-level lung functions on a chip. Science 328:1662–1668, 2010.

    Article  CAS  PubMed  Google Scholar 

  30. Jackman, R. J., J. L. Wilbur, and G. M. Whitesides. Fabrication of submicrometer features on curved substrates by microcontact printing. Science 269:664–666, 1995.

    Article  CAS  PubMed  Google Scholar 

  31. Karp, J. M., J. Yeh, G. Eng, J. Fukuda, J. Blumling, K.-Y. Suh, J. Cheng, A. Mahdavi, J. Borenstein, and R. Langer. Controlling size, shape and homogeneity of embryoid bodies using poly (ethylene glycol) microwells. Lab Chip 7:786–794, 2007.

    Article  CAS  PubMed  Google Scholar 

  32. Kasimir, M., E. Rieder, G. Seebacher, A. Nigisch, B. Dekan, E. Wolner, G. Weigel, and P. Simon. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J. Heart Valve Dis. 15:278, 2006.

    PubMed  Google Scholar 

  33. Khetan, S., and J. A. Burdick. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31:8228–8234, 2010.

    Article  CAS  PubMed  Google Scholar 

  34. Khetan, S., M. Guvendiren, W. R. Legant, D. M. Cohen, C. S. Chen, and J. A. Burdick. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12:458–465, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kloxin, A. M., A. M. Kasko, C. N. Salinas, and K. S. Anseth. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kroon, E., L. A. Martinson, K. Kadoya, A. G. Bang, O. G. Kelly, S. Eliazer, H. Young, M. Richardson, N. G. Smart, and J. Cunningham. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26:443–452, 2008.

    Article  CAS  PubMed  Google Scholar 

  37. Kurpinski, K., H. Lam, J. Chu, A. Wang, A. Kim, E. Tsay, S. Agrawal, D. V. Schaffer, and S. Li. Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28:734–742, 2010.

    Article  CAS  PubMed  Google Scholar 

  38. Kurpinski, K. T., J. T. Stephenson, R. R. Janairo, H. Lee, and S. Li. The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials 31:3536–3542, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Law, B., R. Weissleder, and C.-H. Tung. Peptide-based biomaterials for protease-enhanced drug delivery. Biomacromolecules 7:1261–1265, 2006.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, B. L.-P., H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, and S. Li. Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. Acta Biomater. 8:2648–2658, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. L’Heureux, N., N. Dusserre, G. Konig, B. Victor, P. Keire, T. N. Wight, N. A. Chronos, A. E. Kyles, C. R. Gregory, G. Hoyt, R. C. Robbins, and T. N. McAllister. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12:361–365, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Li, W. J., C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60:613–621, 2002.

    Article  CAS  PubMed  Google Scholar 

  43. Li, S., D. Sengupta, and S. Chien. Vascular tissue engineering: from in vitro to in situ. Wiley Interdiscip. Rev. Syst. Biol. Med. 6:61–76, 2014.

    Article  CAS  PubMed  Google Scholar 

  44. Liang, D., B. S. Hsiao, and B. Chu. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev. 59:1392–1412, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Liau, B., N. Christoforou, K. W. Leong, and N. Bursac. Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials 32:9180–9187, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lim, F., and A. M. Sun. Microencapsulated islets as bioartificial endocrine pancreas. Science. 210:908–910, 1980.

    Article  CAS  PubMed  Google Scholar 

  47. Liu, W., S. Thomopoulos, and Y. Xia. Electrospun nanofibers for regenerative medicine. Adv. Healthc. Mater. 1:10–25, 2012.

    Article  CAS  PubMed  Google Scholar 

  48. Losordo, D. W., and S. Dimmeler. Therapeutic angiogenesis and vasculogenesis for ischemic disease part I: angiogenic cytokines. Circulation 109:2487–2491, 2004.

    Article  PubMed  Google Scholar 

  49. Losordo, D. W., and S. Dimmeler. Therapeutic angiogenesis and vasculogenesis for ischemic disease Part II: cell-based therapies. Circulation 109:2692–2697, 2004.

    Article  PubMed  Google Scholar 

  50. Lutolf, M., and J. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:47–55, 2005.

    Article  CAS  PubMed  Google Scholar 

  51. Madden, L. R., D. J. Mortisen, E. M. Sussman, S. K. Dupras, J. A. Fugate, J. L. Cuy, K. D. Hauch, M. A. Laflamme, C. E. Murry, and B. D. Ratner. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl. Acad. Sci. USA 107:15211–15216, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Mann, B. K., A. S. Gobin, A. T. Tsai, R. H. Schmedlen, and J. L. West. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051, 2001.

    Article  CAS  PubMed  Google Scholar 

  53. Meinel, L., S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan. The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26:147–155, 2005.

    Article  CAS  PubMed  Google Scholar 

  54. Mikos, A. G., A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer, D. N. Winslow, and J. P. Vacanti. Preparation and characterization of poly (l-lactic acid) foams. Polymer 35:1068–1077, 1994.

    Article  CAS  Google Scholar 

  55. Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D.-H. T. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, and X. Yu. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Morishita, M., N. Kamei, J. Ehara, K. Isowa, and K. Takayama. A novel approach using functional peptides for efficient intestinal absorption of insulin. J. Control Releas. 118:177–184, 2007.

    Article  CAS  Google Scholar 

  57. Murphy, W. L., M. C. Peters, D. H. Kohn, and D. J. Mooney. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21:2521–2527, 2000.

    Article  CAS  PubMed  Google Scholar 

  58. Nerem, R. M., and A. Sambanis. Tissue engineering: from biology to biological substitutes. Tissue Eng. 1:3–13, 1995.

    Article  CAS  PubMed  Google Scholar 

  59. Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284:489–493, 1999.

    Article  CAS  PubMed  Google Scholar 

  60. Oberpenning, F., J. Meng, J. J. Yoo, and A. Atala. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol. 17:149–155, 1999.

    Article  CAS  PubMed  Google Scholar 

  61. Ott, H. C., B. Clippinger, C. Conrad, C. Schuetz, I. Pomerantseva, L. Ikonomou, D. Kotton, and J. P. Vacanti. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16:927–933, 2010.

    Article  CAS  PubMed  Google Scholar 

  62. Ott, H. C., T. S. Matthiesen, S.-K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, and D. A. Taylor. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14:213–221, 2008.

    Article  CAS  PubMed  Google Scholar 

  63. Pashuck, E. T., and M. M. Stevens. Designing regenerative biomaterial therapies for the clinic. Sci. Transl. Med. 4:160rs164, 2012.

    Article  Google Scholar 

  64. Paul, N. E., C. Skazik, M. Harwardt, M. Bartneck, B. Denecke, D. Klee, J. Salber, and G. Zwadlo-Klarwasser. Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface. Biomaterials 29:4056–4064, 2008.

    Article  CAS  PubMed  Google Scholar 

  65. Phipps, M. C., W. C. Clem, J. M. Grunda, G. A. Clines, and S. L. Bellis. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 33:524–534, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Radisic, M., H. Park, H. Shing, T. Consi, F. J. Schoen, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl. Acad. Sci. USA 101:18129–18134, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Refai, A. K., M. Textor, D. M. Brunette, and J. D. Waterfield. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J. Biomed. Mater. Res. Part A. 70:194–205, 2004.

    Article  Google Scholar 

  68. Richardson, T. P., M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034, 2001.

    Article  CAS  PubMed  Google Scholar 

  69. Ruan, M. Z., A. Erez, K. Guse, B. Dawson, T. Bertin, Y. Chen, M.-M. Jiang, J. Yustein, F. Gannon, and B. H. Lee. Proteoglycan 4 expression protects against the development of osteoarthritis. Sci. Transl. Med. 5:176ra134, 2013.

    Article  Google Scholar 

  70. Schumacher, B., P. Pecher, B. U. von Specht, and T. Stegmann. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 97:645–650, 1998.

    Article  CAS  PubMed  Google Scholar 

  71. Seliktar, D., A. Zisch, M. Lutolf, J. Wrana, and J. Hubbell. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J. Biomed. Mater. Res. A. 68:704–716, 2004.

    Article  CAS  PubMed  Google Scholar 

  72. Sengupta, D., P. M. Gilbert, K. J. Johnson, H. M. Blau, and S. C. Heilshorn. Protein-engineered biomaterials to generate human skeletal muscle mimics. Adv. Healthc. Mater. 1:785–789, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Stock, U. A., and K. Schenke-Layland. Performance of decellularized xenogeneic tissue in heart valve replacement. Biomaterials 27:1–2, 2006.

    Article  CAS  PubMed  Google Scholar 

  74. Straley, K. S., and S. C. Heilshorn. Dynamic, 3D-pattern formation within enzyme-responsive hydrogels. Adv. Mater. 21:4148–4152, 2009.

    Article  CAS  Google Scholar 

  75. Sussman, E. M., M. C. Halpin, J. Muster, R. T. Moon, and B. D. Ratner. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 2013. doi:10.1007/s10439-013-0933-0.

  76. Tabata, Y., and Y. Ikada. Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 20:2169–2175, 1999.

    Article  CAS  PubMed  Google Scholar 

  77. Telemeco, T., C. Ayres, G. Bowlin, G. Wnek, E. Boland, N. Cohen, C. Baumgarten, J. Mathews, and D. Simpson. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater. 1:377–385, 2005.

    Article  CAS  PubMed  Google Scholar 

  78. Uygun, B. E., A. Soto-Gutierrez, H. Yagi, M.-L. Izamis, M. A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, and F. Berthiaume. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16:814–820, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Vozzi, G., C. Flaim, A. Ahluwalia, and S. Bhatia. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540, 2003.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, D.-A., S. Varghese, B. Sharma, I. Strehin, S. Fermanian, J. Gorham, D. H. Fairbrother, B. Cascio, and J. H. Elisseeff. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat. Mater. 6:385–392, 2007.

    Article  CAS  PubMed  Google Scholar 

  81. Williams, D. F. On the nature of biomaterials. Biomaterials 30:5897–5909, 2009.

    Article  CAS  PubMed  Google Scholar 

  82. Yannas, J. B. I., W. Quinby, Jr., C. Bondoc, and W. Jung. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann. Surg. 194:413, 1981.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Zisch, A. H., M. P. Lutolf, and J. A. Hubbell. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc. Pathol. 12:295–310, 2003.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by a Siebel Postdoctoral Fellowship (to D.S.), a grant from the National Institute of Health (EB012240 to S.L.), and a grant from the California Institute of Regenerative Medicine (RB3-05232to S.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li.

Additional information

Associate Editor Nenad Bursac oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, D., Waldman, S.D. & Li, S. From In Vitro to In Situ Tissue Engineering. Ann Biomed Eng 42, 1537–1545 (2014). https://doi.org/10.1007/s10439-014-1022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1022-8

Keywords

Navigation