Skip to main content
Log in

Developmental Changes in Postnatal Murine Intestinal Interstitial Cell of Cajal Network Structure and Function

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mammalian gastrointestinal (GI) tract undergoes rapid development during early postnatal life in order to transition from a milk to solid diet. Interstitial cells of Cajal (ICC) are the pacemaker cells that coordinate smooth muscle contractility within the GI tract, and hence we hypothesized that ICC networks undergo significant developmental changes during this early postnatal period. Numerical metrics for quantifying ICC network structural properties were applied on confocal ICC network imaging data obtained from the murine small intestine at various postnatal ages spanning birth to weaning. These imaging data were also coupled to a biophysically-based computational model to simulate pacemaker activity in the networks, to quantify how changes in structure may alter function. The results showed a pruning-like mechanism which occurs during postnatal development, and the temporal course of this phenomenon was defined. There was an initial ICC process overgrowth to optimize network efficiency and increase functional output volume. This was followed by a selective retaining and strengthening of processes, while others were discarded to further elevate functional output volume. Subsequently, new ICC processes were formed and the network was adjusted to its adult morphology. These postnatal ICC network developmental events may be critical in facilitating mature digestive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

DMP:

Deep muscular plexus

ENS:

Enteric nervous system

GI:

Gastrointestinal

ICC:

Interstitial cells of Cajal

MP:

Myenteric plexus

SMC:

Smooth muscle cell(s)

References

  1. Burns, A. J., R. R. Roberts, J. C. Bornstein, and H. M. Young. Development of the enteric nervous system and its role in intestinal motility during fetal and early postnatal stages. Semin. Pediatr. Surg. 18:196–205, 2009.

    Article  PubMed  Google Scholar 

  2. Corrias, A., and M. L. Buist. Quantitative cellular description of gastric slow wave activity. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G989–G995, 2008.

    Article  CAS  PubMed  Google Scholar 

  3. Du, P., G. O’Grady, S. J. Gibbons, R. Yassi, R. Lees-Green, G. Farrugia, L. K. Cheng, and A. J. Pullan. Tissue-specific mathematical models of slow wave entrainment in wild-type and 5-HT(2B) knockout mice with altered interstitial cells of Cajal networks. Biophys. J. 98:1772–1781, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Farrugia, G. Interstitial cells of Cajal in health and disease. Neurogastroenterol. Motil. 20:54–63, 2008.

    Article  PubMed  Google Scholar 

  5. Faussone-Pellegrini, M. S. Morphogenesis of the special circular muscle layer and of the interstitial cells of Cajal related to the plexus muscularis profundus of mouse intestinal muscle coat. Anat. Embryol. 169:151–158, 1984.

    Article  CAS  PubMed  Google Scholar 

  6. Faussone-Pellegrini, M. S. Cytodifferentiation of the interstitial cells of Cajal related to the myenteric plexus of mouse intestinal muscle coat. Anat. Embryol. 171:163–169, 1985.

    Article  CAS  PubMed  Google Scholar 

  7. Foong, J. P. P., T. V. Nguyen, J. B. Furness, J. C. Bornstein, and H. M. Young. Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. J. Physiol. 590:2375–2390, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gao, J., P. Du, R. Archer, G. O’Grady, S. J. Gibbons, G. Farrugia, L. K. Cheng, and A. J. Pullan. A stochastic multi-scale model of electrical function in normal and depleted ICC networks. IEEE Trans. Biomed. Eng. 58:3451–3455, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Gao, J., P. Du, G. O’Grady, R. Archer, G. Farrugia, S. J. Gibbons, and L. K. Cheng. Numerical metrics for automated quantification of interstitial cell of Cajal network structural properties. J. R. Soc. Interface 10:20130421, 2013.

    Article  PubMed  Google Scholar 

  10. Henning, S. J. Postnatal development: coordination of feeding, digestion, and metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 241:G199–G214, 1981.

    CAS  Google Scholar 

  11. Henriquez, C. S. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng. 21:1–77, 1993.

    CAS  PubMed  Google Scholar 

  12. Huizinga, J. D., L. Thuneberg, M. Klüppel, J. Malysz, H. B. Mikkelsen, and A. Bernstein. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373:347–349, 1995.

    Article  CAS  PubMed  Google Scholar 

  13. Kenny, S., J. Vanderwinden, R. Rintala, M. Connell, D. Lloyd, J. Vanderhaegen, and M. De Laet. Delayed maturation of the interstitial cells of Cajal: a new diagnosis for transient neonatal pseudoobstruction. Report of two cases. J. Pediatr. Surg. 33:94–98, 1998.

    Article  CAS  PubMed  Google Scholar 

  14. Klein, S., B. Seidler, A. Kettenberger, A. Sibaev, M. Rohn, R. Feil, H. D. Allescher, J. M. Vanderwinden, F. Hofmann, M. Schemann, R. Rad, M. A. Storr, R. M. Schmid, G. Schneider, and D. Saur. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat. Commun. 4:1630, 2013.

    Article  PubMed  Google Scholar 

  15. Klüppel, M., J. D. Huizinga, J. Malysz, and A. Bernstein. Developmental origin and Kit-dependent development of the interstitial cells of Cajal in the mammalian small intestine. Dev. Dyn. 211:60–71, 1998.

    Article  PubMed  Google Scholar 

  16. Klüppel, M., D. L. Nagle, M. Bucan, and A. Bernstein. Long-range genomic rearrangements upstream of Kit dysregulate the developmental pattern of Kit expression in W57 and Wbanded mice and interfere with distinct steps in melanocyte development. Development 124:65–77, 1997.

    PubMed  Google Scholar 

  17. Komuro, T., and D. S. Zhou. Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of Cajal in the guinea-pig small intestine. J. Auton. Nerv. Syst. 61:169–174, 1996.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, L., L. Thuneberg, and J. Huizinga. Development of pacemaker activity and interstitial cells of Cajal in the neonatal mouse small intestine. Dev. Dyn. 213:271–282, 1998.

    Article  CAS  PubMed  Google Scholar 

  19. Low, L. K., and H. J. Cheng. A little nip and tuck: axon refinement during development and axonal injury. Curr. Opin. Neurobiol. 15:549–556, 2005.

    Article  CAS  PubMed  Google Scholar 

  20. Low, L. K., and H. J. Cheng. Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. Philos. Trans. R. Soc. Lond. B 361:1531–1544, 2006.

    Article  CAS  Google Scholar 

  21. Luo, L., and D. D. M. O’Leary. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28:127–156, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Maeda, H., A. Yamagata, S. Nishikawa, K. Yoshinaga, S. Kobayashi, K. Nishi, and S. Nishikawa. Requirement of c-kit for development of intestinal pacemaker system. Development 116:369–375, 1992.

    CAS  PubMed  Google Scholar 

  23. Mei, F., J. Zhu, S. Guo, D. S. Zhou, J. Han, B. Yu, S. F. Li, Z. Y. Jiang, and C. J. Xiong. An age-dependent proliferation is involved in the postnatal development of interstitial cells of Cajal in the small intestine of mice. Histochem. Cell Biol. 131:43–53, 2009.

    Article  CAS  PubMed  Google Scholar 

  24. Mirams, G. R., C. J. Arthurs, M. O. Bernabeu, R. Bordas, J. Cooper, A. Corrias, Y. Davit, S. J. Dunn, A. G. Fletcher, D. G. Harvey, M. E. Marsh, J. M. Osborne, P. Pathmanathan, J. Pitt-Francis, J. Southern, N. Zemzemi, and D. J. Gavaghan. Chaste: an open source C++ library for computational physiology and biology. PLoS Comput. Biol. 9:e1002970, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. O’Grady, G., T. R. Angeli, P. Du, C. Lahr, W. J. E. P. Lammers, J. A. Windsor, T. L. Abell, G. Farrugia, A. J. Pullan, and L. K. Cheng. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 143:589–598, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Park, K., G. Hennig, H. Lee, N. Spencer, S. Ward, T. Smith, and K. Sanders. Spatial and temporal mapping of pacemaker activity in interstitial cells of Cajal in mouse ileum in situ. Am. J. Physiol. Cell Physiol. 290:C1411–C1427, 2006.

    Article  CAS  PubMed  Google Scholar 

  27. Rich, A., M. Hanani, L. G. Ermilov, J. Malysz, V. Belzer, J. H. Szurszewski, and G. Farrugia. Physiological study of interstitial cells of Cajal identified by vital staining. Neurogastroenterol. Motil. 14:189–196, 2002.

    Article  CAS  PubMed  Google Scholar 

  28. Sathar, S., M. L. Trew, P. Du, G. O’Grady, and L. K. Cheng. A biophysically based finite-state machine model for analyzing gastric experimental entrainment and pacing recordings. Ann. Biomed. Eng. 42:858–870, 2014.

    Article  PubMed  Google Scholar 

  29. Schäfer, K. H., A. Hänsgen, and P. Mestres. Morphological changes of the myenteric plexus during early postnatal development of the rat. Anat. Rec. 256:20–28, 1999.

    Article  PubMed  Google Scholar 

  30. Tharayil, V. S., M. M. Wouters, J. E. Stanich, J. L. Roeder, S. Lei, A. Beyder, P. J. Gomez-Pinilla, M. D. Gershon, L. Maroteaux, S. J. Gibbons, and G. Farrugia. Lack of serotonin 5-HT2B receptor alters proliferation and network volume of interstitial cells of Cajal in vivo. Neurogastroenterol. Motil. 22:462–469, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Torihashi, S., T. Fujimoto, C. Trost, and S. Nakayama. Calcium oscillation linked to pacemaking of interstitial cells of Cajal: requirement of calcium influx and localization of TRP4 in caveolae. J. Biol. Chem. 277:19191–19197, 2002.

    Article  CAS  PubMed  Google Scholar 

  32. Torihashi, S., S. M. Ward, S. I. Nishikawa, K. Nishi, S. Kobayashi, and K. M. Sanders. C-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 280:97–111, 1995.

    CAS  PubMed  Google Scholar 

  33. Torihashi, S., S. Ward, and K. Sanders. Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology 112:144–155, 1997.

    Article  CAS  PubMed  Google Scholar 

  34. van Helden, D. F., D. R. Laver, J. Holdsworth, and M. S. Imtiaz. Generation and propagation of gastric slow waves. Clin. Exp. Pharmacol. Physiol. 37:516–524, 2010.

    Article  PubMed  Google Scholar 

  35. Vanderwinden, J., H. Liu, M. De Laet, and J. Vanderhaeghen. Study of the interstitial cells of Cajal in infantile hypertrophic pyloric stenosis. Gastroenterology 111:279–288, 1996.

    Article  CAS  PubMed  Google Scholar 

  36. Ward, S. M., T. Ördög, S. D. Koh, S. Abu Baker, J. Y. Jun, G. Amberg, K. Monaghan, and K. M. Sanders. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J. Physiol. 525:355–361, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Feng Mei for beneficial discussion and critical review of the paper, and Dr. Niranchan Paskaranandavadivel for assessing the quality of the ICC imaging data. The authors also wish to acknowledge the contribution of the NeSI high-performance computing facilities at the University of Auckland and the staff at NeSI and Centre for eResearch. J.G. is supported by a University of Auckland Health Research Doctoral Scholarship, a Freemasons Postgraduate Scholarship, and a R. H. T. Bates Postgraduate Scholarship. This work is funded in part by grants from the Riddet Institute, New Zealand Health Research Council, and National Institutes of Health (R01 DK64775).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo K. Cheng.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Sathar, S., O’Grady, G. et al. Developmental Changes in Postnatal Murine Intestinal Interstitial Cell of Cajal Network Structure and Function. Ann Biomed Eng 42, 1729–1739 (2014). https://doi.org/10.1007/s10439-014-1021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1021-9

Keywords

Navigation