Skip to main content
Log in

On the Decellularization of Fresh or Frozen Human Umbilical Arteries: Implications for Small-Diameter Tissue Engineered Vascular Grafts

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Most tissues, including those to be decellularized for tissue engineering applications, are frozen for long term preservation. Such conventional cryopreservation has been shown to alter the structure and mechanical properties of tissues. Little is known, however, how freezing affects decellularization of tissues. The purpose of this study was two-fold: to examine the effects of freezing on decellularization of human umbilical arteries (HUAs), which represent a potential scaffolding material for small-diameter tissue-engineered vascular grafts, and to examine how decellularization affects the mechanical properties of frozen HUAs. Among many decellularization methods, hypotonic sodium dodecyl sulfate solution was selected as the decellularizing agent and tested on fresh HUAs to optimize decellularization conditions. The efficiency of decellularization was evaluated by DNA assay and histology every 12 up to 48 h. The optimized decellularization protocol was then performed on frozen HUAs. The stiffness, burst pressure, and suture retention strength of fresh HUAs and frozen HUAs before and after decellularization were also examined. It appeared that freezing decreased the efficiency of decellularization, which may be attributed to the condensed extracellular matrix caused by freezing. While the stiffness of fresh HUAs did not change significantly after decellularization, decellularization reduced the compliance of frozen HUAs. Interestingly, the stiffness of decellularized frozen HUAs was similar to that of decellularized fresh HUAs. Although little difference in stiffness was observed, we suggest avoiding freezing if more efficient and complete decellularization is desired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abousleiman, R. I., Y. Reyes, P. McFetridge, et al. The human umbilical vein: a novel scaffold for musculoskeletal soft tissue regeneration. Artif. Organs 32:735–742, 2008.

    Article  PubMed  Google Scholar 

  2. Adham, M., J. P. Gournier, J. P. Favre, et al. Mechanical characteristics of fresh and frozen human descending thoracic aorta. J. Surg. Res. 64:32–34, 1996.

    Article  CAS  PubMed  Google Scholar 

  3. Bakhach, J. The cryopreservation of composite tissues: principles and recent advancement on cryopreservation of different type of tissues. Organogenesis 5:119–126, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Ballyk, P. D., C. Walsh, J. Butany, et al. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J. Biomech. 31:229–237, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Bergmeister, H., M. Strobl, C. Grasl, et al. Tissue engineering of vascular grafts European Surgery. Acta Chirurgica Austriaca 45:187–193, 2013.

    Article  Google Scholar 

  6. Bishopric, N. H., L. Dousman, and Y. M. M. Yao. Matrix Substrate for a Viable Body Tissue-Derived Prosthesis and Method for Making the Same. Saint Paul: St. Jude Medical Inc, 1999.

    Google Scholar 

  7. Blondel, W. C. P. M., B. Lehalle, G. Maurice, et al. Rheological properties of fresh and cryopreserved human arteries tested in vitro. Rheol. Acta 39:461–468, 2000.

    Article  CAS  Google Scholar 

  8. Couet, F., S. Meghezi, and D. Mantovani. Fetal development, mechanobiology and optimal control processes can improve vascular tissue regeneration in bioreactors: an integrative review. Med. Eng. Phys. 34:269–278, 2012.

    Article  PubMed  Google Scholar 

  9. Cox, B., and A. Emili. Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat. Protoc. 1:1872–1878, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Crapo, P. M., T. W. Gilbert, and S. F. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Crouzier, T., T. McClendon, Z. Tosun, et al. Inverted human umbilical arteries with tunable wall thicknesses for nerve regeneration. J. Biomed. Mater. Res. A 89:818–828, 2009.

    Article  PubMed  Google Scholar 

  12. Dahl, S. L. M., J. Koh, V. Prabhakar, et al. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant. 12:659–666, 2003.

    PubMed  Google Scholar 

  13. Ferruzzi, J., M. R. Bersi, and J. D. Humphrey. Biomechanical phenotyping of central arteries in health and disease: advantages of and methods for murine models. Ann. Biomed. Eng. 41:1311–1330, 2013.

    Article  CAS  PubMed  Google Scholar 

  14. Fitzpatrick, J. C., P. M. Clark, and F. M. Capaldi. Effect of decellularization protocol on the mechanical behavior of porcine descending aorta. Int. J. Biomater., 2010. doi:10.1155/2010/620503.

  15. Gilbert, T. W., T. L. Sellaro, and S. F. Badylak. Decellularization of tissues and organs. Biomaterials 27:3675–3683, 2006.

    CAS  PubMed  Google Scholar 

  16. Greenwald, S. E., and C. L. Berry. Improving vascular grafts: the importance of mechanical and haemodynamic properties. J. Pathol. 190:292–299, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Gui, L. Q., A. Muto, S. A. Chan, et al. Development of decellularized human umbilical arteries as small-diameter vascular grafts. Tissue Eng. Part A 15:2665–2676, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hoenicka, M., K. Lehle, V. R. Jacobs, et al. Properties of the human umbilical vein as a living scaffold for a tissue-engineered vessel graft. Tissue Eng. 13:219–229, 2007.

    Article  CAS  PubMed  Google Scholar 

  19. Hu, J. J., A. Ambrus, T. W. Fossum, et al. Time courses of growth and remodeling of porcine aortic media during hypertension: a quantitative immunohistochemical examination. J. Histochem. Cytochem. 56:359–370, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hu, J. J., W. C. Chao, P. Y. Lee, et al. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach. J. Mech. Behav. Biomed. Mater. 13:140–155, 2012.

    Article  CAS  PubMed  Google Scholar 

  21. Hu, J. J., T. W. Fossum, M. W. Miller, et al. Biomechanics of the porcine basilar artery in hypertension. Ann. Biomed. Eng. 35:19–29, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 2002.

    Book  Google Scholar 

  23. Isenberg, B. C., C. Williams, and R. T. Tranquillo. Small-diameter artificial arteries engineered in vitro. Circ. Res. 98:25–35, 2006.

    Article  CAS  PubMed  Google Scholar 

  24. Kannan, R. Y., H. J. Salacinski, P. E. Butler, et al. Current status of prosthetic bypass grafts: a review. J. Biomed. Mater. Res. Part B 74B:570–581, 2005.

    Article  CAS  Google Scholar 

  25. Ketchedjian, A., A. L. Jones, P. Krueger, et al. Recellularization of decellularized allograft scaffolds in ovine great vessel reconstructions. Ann. Thorac. Surg. 79:888–896, 2005.

    Article  PubMed  Google Scholar 

  26. Masson, I., A. Fialaire-Legendre, C. Godin, et al. Mechanical properties of arteries cryopreserved at −80 degrees C and −150 degrees C. Med. Eng. Phys. 31:825–832, 2009.

    Article  PubMed  Google Scholar 

  27. Muller-Schweinitzer, E. Cryopreservation of vascular tissues. Organogenesis 5:97–104, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Nseir, N., O. Regev, T. Kaully, et al. Biodegradable scaffold fabricated of electrospun albumin fibers: mechanical and biological characterization. Tissue Eng. Part C 19:257–264, 2013.

    Article  CAS  Google Scholar 

  29. Pellegata, A. F., M. A. Asnaghi, I. Stefani, et al. Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering. Biomed. Res. Int. 20:918753, 2013.

    Google Scholar 

  30. Pukacki, F., T. Jankowski, M. Gabriel, et al. The mechanical properties of fresh and cryopreserved arterial homografts. Eur. J. Vasc. Endovasc. Surg. 20:21–24, 2000.

    Article  CAS  PubMed  Google Scholar 

  31. Rosario, D. J., G. C. Reilly, E. A. Salah, et al. Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regen. Med. 3:145–156, 2008.

    Article  CAS  PubMed  Google Scholar 

  32. Rosset, E., A. Friggi, G. Novakovitch, et al. Effects of cryopreservation on the viscoelastic properties of human arteries. Ann. Vasc. Surg. 10:262–272, 1996.

    Article  CAS  PubMed  Google Scholar 

  33. Roy, S., P. Silacci, and N. Stergiopulos. Biomechanical properties of decellularized porcine common carotid arteries. Am. J. Physiol. Heart Circ. Physiol. 289:H1567–H1576, 2005.

    Article  CAS  PubMed  Google Scholar 

  34. Schaner, P. J., N. D. Martin, T. N. Tulenko, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. J. Vasc. Surg. 40:146–153, 2004.

    Article  PubMed  Google Scholar 

  35. Schutte, S. C., Z. Z. Chen, K. G. M. Brockbank, et al. Cyclic strain improves strength and function of a collagen-based tissue-engineered vascular media. Tissue Eng. Part A 16:3149–3157, 2010.

    Article  CAS  PubMed  Google Scholar 

  36. Sheridan, W. S., G. P. Duffy, and B. P. Murphy. Mechanical characterization of a customized decellularized scaffold for vascular tissue engineering. J. Mech. Behav. Biomed. Mater. 8:58–70, 2012.

    Article  CAS  PubMed  Google Scholar 

  37. Song, Y. C., B. S. Khirabadi, F. Lightfoot, et al. Vitreous cryopreservation maintains the function of vascular grafts. Nat. Biotechnol. 18:296–299, 2000.

    Article  CAS  PubMed  Google Scholar 

  38. Stegemann, J. P., S. N. Kaszuba, and S. L. Rowe. Review: advances in vascular tissue engineering using protein-based Biomaterials. Tissue Eng. 13:2601–2613, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Stemper, B. D., N. Yoganandan, M. R. Stineman, et al. Mechanics of fresh, refrigerated, and frozen arterial tissue. J. Surg. Res. 139:236–242, 2007.

    Article  PubMed  Google Scholar 

  40. Thakrar, R. R., V. P. Patel, G. Hamilton, et al. Vitreous cryopreservation maintains the viscoelastic property of human vascular grafts. FASEB J. 20:874–881, 2006.

    Article  CAS  PubMed  Google Scholar 

  41. Vaz, C. M., S. van Tuijl, C. V. C. Bouten, et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 1:575–582, 2005.

    Article  CAS  PubMed  Google Scholar 

  42. Veith, F. J., S. K. Gupta, E. Ascer, et al. 6-Year prospective multicenter randomized comparison of autologous saphenous-vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J. Vasc. Surg. 3:104–114, 1986.

    Article  CAS  PubMed  Google Scholar 

  43. Veith, F. J., C. M. Moss, S. Sprayregen, et al. Preoperative saphenous venography in arterial reconstructive surgery of the lower-extremity. Surgery 85:253–256, 1979.

    CAS  PubMed  Google Scholar 

  44. Venkatasubramanian, R. T., E. D. Grassl, V. H. Barocas, et al. Effects of freezing and cryopreservation on the mechanical properties of arteries. Ann. Biomed. Eng. 34:823–832, 2006.

    Article  PubMed  Google Scholar 

  45. Williams, C., J. Liao, E. M. Joyce, et al. Altered structural and mechanical properties in decellularized rabbit carotid arteries. Acta Biomater. 5:993–1005, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Xiong, Y., W. Y. Chan, A. W. C. Chua, et al. Decellularized porcine saphenous artery for small-diameter tissue-engineered conduit graft. Artif. Organs 37:E74–E87, 2013.

    Article  CAS  PubMed  Google Scholar 

  47. Xu, C. C., R. W. Chan, and N. Tirunagari. A biodegradable, acellular xenogeneic scaffold for regeneration of the vocal fold lamina propria. Tissue Eng. 13:551–566, 2007.

    Article  CAS  PubMed  Google Scholar 

  48. Zou, Y., and Y. H. Zhang. Mechanical evaluation of decellularized porcine thoracic aorta. J. Surg. Res. 175:359–368, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by grants from the National Science Council (NSC-100-2221-E-006-097) and the National Health Research Institute (NHRI-EX102-10217EC) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Jia Hu.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 83 kb)

Supplementary material 2 (PDF 579 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuan-Mu, HY., Yu, CH. & Hu, JJ. On the Decellularization of Fresh or Frozen Human Umbilical Arteries: Implications for Small-Diameter Tissue Engineered Vascular Grafts. Ann Biomed Eng 42, 1305–1318 (2014). https://doi.org/10.1007/s10439-014-1000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1000-1

Keywords

Navigation