Skip to main content
Log in

Tissue engineering of vascular grafts

  • Review
  • Published:
European Surgery Aims and scope Submit manuscript

Summary

Background

There is a considerable clinical need for a sufficient prosthetic small-diameter substitute which can compete with autologous vessels. Currently used synthetic materials have a poor performance due to high thrombogeneicity and development of intimal hyperplasia. Tissue engineering is an interesting alternative approach for vascular graft fabrication.

Methods

We briefly overviewed the development of tissue-engineered vascular substitutes including endothelialized biohybrid grafts, collagen and fibrin-based scaffolds, decellularized scaffolds, cell self-assembly approaches, and biodegradable constructs based on synthetic polymers.

Results

Significant advances have been made over the past decades in the development of tissue-engineered conduits. Biomechanical weakness, one of the major limitations of biologically based grafts has been resolved and two tissue-engineered grafts are currently under further investigation for clinical application.

Conclusions

Vascular tissue engineering is a promising approach to overcome the limitations of current therapies in small-diameter vascular replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. J Vas Surg. 2003;37:472–80.

    Article  Google Scholar 

  2. Kakisis JD, Liapis CD, Breuer C, Sumpio BE. Artificial blood vessel: the holy grail of peripheral vascular surgery. J Vasc Surg. 2005;41:349–54.

    Article  PubMed  Google Scholar 

  3. Wang X, Lin P, Yao Q, Chen C. Development of small-diameter vascular grafts. World J Surg. 2007;31:682–9.

    Article  PubMed  Google Scholar 

  4. Venkatraman S, Boey F, Lao LL. Implanted cardiovascular polymers: natural, synthetic and bio-inspired. Prog Polym Sci. 2008;33:853–74.

    Article  CAS  Google Scholar 

  5. Brewster DC. Prosthetic grafts. In: Rutherford RB, editor. Vascular surgery. 5th ed. Philadelphia: WB Saunders; 2000. pp 559–84.

    Google Scholar 

  6. Klinkert P, Post PN, Breslau PJ, van Bockel JH. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc Surg. 2004;27:357–62.

    Article  PubMed  CAS  Google Scholar 

  7. Weitz JI, Byrne J, Clagett P, Farkouh ME, Porter JM, Sackett DL, Strandness DE, Taylor LM. Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation. 1996;94:3026–49.

    Article  PubMed  CAS  Google Scholar 

  8. Loh SA, Howell BS, Rockman CB, Cayne NS, Adelman MA, Gulkarov I, Veith FJ, Maldonado TS. Ann Mid- and long-term results of the treatment of infrainguinal arterial occlusive disease with precuffed expanded polytetrafluoroethylene grafts compared with vein grafts. Vasc Surg. 2013;27:208–17.

    Article  Google Scholar 

  9. Pereira CE, Albers M, Romiti M, Brochado-Neto FC, Pereira CA. Meta-analysis of femoropopliteal bypass grafts for lower extremity arterial insufficiency. J Vasc Surg. 2006;44:510–7.

    Article  PubMed  Google Scholar 

  10. de Mel A, Jell G, Stevens MM, Seifalian AM. Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules. 2008;9:2969–79.

    Article  PubMed  Google Scholar 

  11. Jordan SW, Chaikof EL. Novel thromboresistant materials. J Vasc Surg. 2007;45:104A–15A.

    Article  Google Scholar 

  12. Zilla P, Bezuidenhout D, Human P. Prostheic vascular grafts: wrong models, wrong questions and no healing. Biomaterials. 2007;28:5009–27.

    Article  PubMed  CAS  Google Scholar 

  13. Kapadia MR, Popwich DA, Kibbe MR. Modified prosthetic vascular conduits. Circulation. 2008;117:1873–82.

    Article  PubMed  Google Scholar 

  14. Nerem RM, Seliktar D. Vascular tissue engineering. Annu Rev Eng. 2001;3:225–43.

    Article  CAS  Google Scholar 

  15. Isenberg BC, Chrysanthi W, Tranquillo RT. Small-diameter artificial arteries engineered in vitro. Circ Res. 2006;98:25–35.

    Article  PubMed  CAS  Google Scholar 

  16. Ratcliffe A. Tissue engineering of vascular grafts. Matrix Biol. 2000;19:353–7.

    Article  PubMed  CAS  Google Scholar 

  17. L’Heraux N, Dusserre N, Garrido S, de la Fuente L, McAllister T. Technology insight: the evolution of tissue-engineered vascular grafts-from research to clinical practice. Nat Clin Pract Cardiovasc Med. 2007;4:389–95.

    Article  Google Scholar 

  18. Herring MB. Endothelial cell seeding. J Vasc Surg. 1991;13:731–2.

    Article  PubMed  CAS  Google Scholar 

  19. Herring M, Smith J, Dalsing M, Glover J, Compton R, Etchberger K, Zollinger T. Endothelial seeding of polytetrafluoroethylene femoral popliteal bypasses: the failure of low-density seeding to improve patency. J Vasc Surg. 1994;20:650–5.

    Article  PubMed  CAS  Google Scholar 

  20. Pasic M, Müller-Glauser W, von Segesser LK, Lachat M, Mihaljevic T, Turina MI. Superior late patency of small-diamter dDacron grafts seeded with omental microvascular cells: an experimental study. Ann Thorac Surg. 1994;58:677–83.

    Article  PubMed  CAS  Google Scholar 

  21. Zilla P, Deutsch M, Meinhart J. Endothelial cell transplantation. Semin Vasc Surg. 1999;12:52–63.

    PubMed  CAS  Google Scholar 

  22. Zilla P, Fasol R, Deutsch M, Fischlein T, Minar E, Hammerle A, Krupicka O, Kadletz M, Meinhart J. Endothelial cell seeding of polytetrafluoroethylene vascular grafts in humans: a preliminary report. J Vasc Surg. 1987;6:535–22.

    PubMed  CAS  Google Scholar 

  23. Feugier P, Black RA, Hunt JA, How TV. Attachment, morphology and adherence of human endothelial cells to vascular prosthesis materials under the action of shear stress. Biomaterials. 2005;26:1457–66.

    Article  PubMed  CAS  Google Scholar 

  24. Baguneid M, Murray D, Salacinski HJ, Fuller B, Hamilton G, Walker M, Seifalian AM. Shear stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes. Biotechnol Appl Biochem. 2004;39:151–7.

    Article  PubMed  CAS  Google Scholar 

  25. Deutsch M, Meinhart J, Zilla P, Howanitz N, Gorlitzer M, Froeschl A, Stuempflen A, Bezidenhout D, Grabenwoeger M. Long-term experience in autologous in vitro endothelialisation of infrainguinal ePTFE grafts. J Vasc Surg. 2009;49:352–62.

    Article  PubMed  Google Scholar 

  26. Parikh SA, Edelman ER. Endothelial cell delivery for cardiovascular therapy. Adv Drug Deliv Rev. 2000;42:139–61.

    Article  PubMed  CAS  Google Scholar 

  27. Meinhart JG, Schense JC, Schima H, Gorlitzer M, Hubbel JA, Deutsch M, Zilla P. Enhanced endothelial cell retention on shear-stressed synthetic vascular grafts precoated with RGD-cross-linked fibrin. Tissue Eng. 2005;11:887–95.

    Article  PubMed  CAS  Google Scholar 

  28. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231:397–400.

    Article  PubMed  CAS  Google Scholar 

  29. L’Heraux N, German L, Labbe R, Auger FA. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J Vasc Surg. 1993;17:499–509.

    Google Scholar 

  30. Girton TS, Oegama TR, Grassl ED, Isenberg BC, Tranquillo RT. Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J Biomech Eng. 2000;122:216–23.

    Article  PubMed  CAS  Google Scholar 

  31. Swartz DD, Russel JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol. 2005;288:1451–60.

    Article  Google Scholar 

  32. Barocas VH, Girton TS, Tranquillo RT. Enginered alignment in media equivalents: magnetic prealignment and mandrel compaction. J Biomech Eng. 1998;120:660–6.

    Article  PubMed  CAS  Google Scholar 

  33. Syedain ZH, Meier LA, Bjork JW, Lee A, Tranquillo RT. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials. 2011;32:714–22.

    Article  PubMed  CAS  Google Scholar 

  34. Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21:2215–31.

    Article  PubMed  CAS  Google Scholar 

  35. Wilson GJ, Courtman DW, Klement P, Lee JM, Yeger H. Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg. 1995;60:353–8.

    Article  Google Scholar 

  36. Ketchedjian A, Jones AL, Krueger P, Robinson E, Crouch K, Wolfinbarger L, Hopkins R. Recellularization of decellularized allograft scaffolds in ovine great vessel reconstructions. Ann Thorac Surg. 2005;79:888–96.

    Article  PubMed  Google Scholar 

  37. Mc Fetridge PS, Daniel JW, Bodamyali T, Horrocks M, Chaudhuri JB. Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A. 2004;70:224–34.

    Article  Google Scholar 

  38. Conklin BS, Wu H, Lin PH, Lumsden AB, Chen C. Basic fibroblast growth factor coating and endothelial cell seeding of a decellularized heparin-coated vascular graft. Artif Organs. 2004;28:668–75.

    Article  PubMed  CAS  Google Scholar 

  39. Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, Rabkin E, Moran AM, Schoen FJ, Atala A, Soker S, Bischoff J, Mayer JE. Functional small diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med. 2001;7:1035–40.

    Article  PubMed  CAS  Google Scholar 

  40. Andree B, Bär A, Haverich A, Hilfiker A. Small intestinal submucosa segments as matrix for tissue engineering: review. Tiss Eng Part B Rev. 2013 Jan 14;19(4):279–91.

    Article  CAS  Google Scholar 

  41. Bergmeister H, Boeck P, Kasimir M, Fleck T, Fitzal F, Husinsky W, Mittlboeck M, Stoehr H, Losert U, Wolner E, Grabenwoeger M. Effect of laser perforation on the remodeling of acellular matrix grafts. J Biomed Mater Res B: Appl Biomater. 2005;74:495–503.

    Google Scholar 

  42. Bergmeister H, Plasenzotti R, Walter I, Plass C, Bastian F, Rieder E, Sipos W, Kaider A, Losert U, Weigel G. Decellularized xenogeneic small-diameter arteries: transition from a muscular to an elastic phenotype in vivo. J Biomed Mater Res B Appl Biomater. 2008;87:95–104.

    PubMed  Google Scholar 

  43. L’Heraeux N, Paquet S, Lacoe R, Germain L, Auger FA. A completely biological tissue engineered human blood vessel. FASEB J. 1998;12:47–56.

    Google Scholar 

  44. Peck M, Gebhart D, Dusserre N, McAllister T, L’Heraeux N. The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs. 2012;195:144–58.

    Article  PubMed  CAS  Google Scholar 

  45. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R. Functional arteries grown in vitro. Science. 1999;284:489–93.

    Article  PubMed  CAS  Google Scholar 

  46. Shin’oka T, Imai Y, Ikada Y. Transplantation of tissue-engineered pulmonary artery. N Engl J Med. 2001;344:532–3.

    Article  Google Scholar 

  47. Qint C, Arief M, Muto A, Dradik A, Niklason LE. Allogeneic human tissue-engineered blood vessel. J Vasc Surg. 2012;55:790–8.

    Article  Google Scholar 

  48. Dahl SL, Blum JL, Niklason LE. Bioengineered vascular grafts: can we make them of off-the-shelf? Trends Cardiovasc Med. 2011;21:83–9.

    Article  PubMed  CAS  Google Scholar 

  49. Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006;1:15–30.

    Article  PubMed  CAS  Google Scholar 

  50. Wu W, Allen RA, Wang Y. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med. 2012;18:1148–53.

    Article  PubMed  CAS  Google Scholar 

  51. De Valence S, Tille JC, Mugnal D, Mrowczynski W, Gurny R, Möller M, Walpoth BH. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials. 2012;33:38–47.

    Article  PubMed  CAS  Google Scholar 

  52. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12:1197–211.

    Article  PubMed  CAS  Google Scholar 

  53. Prabhakaran MP, Ghasemi-Mobarakeh L, Ramakrishna S. Electrospun composite nanofibers for tissue engineering regeneration. J Nanosci Nanotechnol. 2011;11:3039–57.

    Article  PubMed  CAS  Google Scholar 

  54. Kong X, Han B, Li H, Liang Y, Shao K, Liu W. New biodegradable small-diameter artificial vascular prosthesis: a feasibility study. J Biomed Mater Res Part A. 2012;100A:1494–1504.

    Article  CAS  Google Scholar 

  55. Szentivanyi A, Chakradeo T, Zernetsch H, Glasmacher B. Electrospun cellular microenvironments: understanding controlled release and scaffold structure. Adv Drug Deliv Rev. 2011;63:209–20.

    Article  PubMed  CAS  Google Scholar 

  56. Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.

    Article  PubMed  CAS  Google Scholar 

  57. Sell SA, McClure MJ, Barnes CP, Knapp DC, Walpoth BH, Simpson DG, Bowlin GL. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomed Mater. 2006;1:72–80.

    Article  PubMed  CAS  Google Scholar 

  58. Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G. Electrospun polyurethane vascular grafts: in vitro mechanical behaviour and endothelial adhesion molecule expression. J Biomed Mater Res A. 2010;93:716–23.

    PubMed  Google Scholar 

  59. Bergmeister H, Schreiber C, Grasl C, Walter I, Plasenzotti R, Stoiber M, Bernhard D, Schima H. Healing characteristics of electrospun polyurethane grafts with various porosities. Acta Biomater. 2013;9:6032–40.

    Article  PubMed  CAS  Google Scholar 

  60. Bergmeister H, Grasl C, Walter I, Plasenzotti R, Stoiber M, Losert U, Weigel G, Schima H. Electrospun small-diameter polyurethane vascular grafts: ingrowth and differentiation of vascular specific host cells. Artif Organs. 2012;36:54–61.

    Article  PubMed  CAS  Google Scholar 

  61. Baudis S, Ligon SC, Seidler K, Weigel G, Grasl C, Bergmeister H, Schima H, Liska R. Hard-block degradable thermoplastic urethane-elastomers for electrospun vascular prostheses. J Polym Sci Part A: Polym Chem. 2012;50:1272–80.

    Article  CAS  Google Scholar 

  62. Bergmeister H, Baudis S, Grasl C, Stoiber M, Schreiber C, Walter I, Plasenzotti R, Liska R, Schima H. In vivo evaluation of electrospun, biodegradable and non-degradable elastomeric vascular grafts. Int J Art Organs. 2011;34:641.

    Google Scholar 

Download references

Conflict of interest

Helga Bergmeister, Magdalena Strobl, Christian Grasl, Robert Liska, and Heinrich Schima declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bergmeister MD, DVM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergmeister, H., Strobl, M., Grasl, C. et al. Tissue engineering of vascular grafts. Eur Surg 45, 187–193 (2013). https://doi.org/10.1007/s10353-013-0224-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10353-013-0224-x

Keywords

Navigation