Skip to main content
Log in

A Fast, Accurate, and Reliable Reconstruction Method of the Lumbar Spine Vertebrae Using Positional MRI

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In vivo measurement of lumbar spine configuration is useful for constructing quantitative biomechanical models. Positional magnetic resonance imaging (MRI) accommodates a larger range of movement in most joints than conventional MRI and does not require a supine position. However, this is achieved at the expense of image resolution and contrast. As a result, quantitative research using positional MRI has required long reconstruction times and is sensitive to incorrectly identifying the vertebral boundary due to low contrast between bone and surrounding tissue in the images. We present a semi-automated method used to obtain digitized reconstructions of lumbar vertebrae in any posture of interest. This method combines a high-resolution reference scan with a low-resolution postural scan to provide a detailed and accurate representation of the vertebrae in the posture of interest. Compared to a criterion standard, translational reconstruction error ranged from 0.7 to 1.6 mm and rotational reconstruction error ranged from 0.3 to 2.6°. Intraclass correlation coefficients indicated high interrater reliability for measurements within the imaging plane (ICC 0.97–0.99). Computational efficiency indicates that this method may be used to compile data sets large enough to account for population variance, and potentially expand the use of positional MRI as a quantitative biomechanics research tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Alyas, F., D. Connell, and A. Saifuddin. Upright positional MRI of the lumbar spine. Clin. Radiol. 63:1035–1048, 2008.

    Article  CAS  PubMed  Google Scholar 

  2. Bao, Q. B., G. M. McCullen, P. A. Higham, J. H. Dumbleton, and H. A. Yuan. The artificial disc: theory, design and materials. Biomaterials 17:1157–1167, 1996.

    Article  CAS  PubMed  Google Scholar 

  3. Baumgartner, D., R. Zemp, R. List, M. Stoop, J. Naxera, J. P. Elsig, and S. Lorenzetti. The spinal curvature of three different sitting positions analysed in an open MRI scanner. Sci. World J. 2012:184016, 2012.

    Article  Google Scholar 

  4. Besl, P., and N. McKay. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14:239–256, 1992.

    Article  Google Scholar 

  5. Cargill, S. C., M. Pearcy, and M. D. Barry. Three-dimensional lumbar spine postures measured by magnetic resonance imaging reconstruction. Spine (Phila. Pa. 1976) 32:1242–1248, 2007.

    Article  Google Scholar 

  6. Draper, C. E., J. M. Santos, L. C. Kourtis, T. F. Besier, M. Fredericson, G. S. Beaupre, G. E. Gold, and S. L. Delp. Feasibility of using real-time MRI to measure joint kinematics in 1.5T and open-bore 0.5T systems. J. Magn. Reson. Imaging 28:158–166, 2008.

    Article  PubMed  Google Scholar 

  7. Fujii, R., H. Sakaura, Y. Mukai, N. Hosono, T. Ishii, M. Iwasaki, H. Yoshikawa, and K. Sugamoto. Kinematics of the lumbar spine in trunk rotation: in vivo three-dimensional analysis using magnetic resonance imaging. Eur. Spine J. 16:1867–1874, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Guan, Y., N. Yoganandan, J. Zhang, F. a Pintar, J. F. Cusick, C. E. Wolfla, and D. J. Maiman. Validation of a clinical finite element model of the human lumbosacral spine. Med. Biol. Eng. Comput. 44:633–641, 2006.

    Article  PubMed  Google Scholar 

  9. Haughton, V. M., B. Rogers, M. E. Meyerand, and D. K. Resnick. Measuring the axial rotation of lumbar vertebrae in vivo with MR imaging. AJNR Am. J. Neuroradiol. 23:1110–1116, 2002.

    PubMed  Google Scholar 

  10. Jinkins, J. R., J. S. Dworkin, C. A. Green, J. F. Greenhalgh, M. Gianni, M. Gelbien, R. B. Wolf, J. Damadian, and R. V. Damadian. Upright, weight-bearing, dynamic-kinetic magnetic resonance imaging of the spine—review of the first clinical results. Magn. Reson. Imaging 6:55–74, 2003.

    Google Scholar 

  11. Kimura, S., G. C. Steinbach, D. E. Watenpaugh, and A. R. Hargens. Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine (Phila. Pa. 1976) 26:2596–2600, 2001.

    Article  CAS  Google Scholar 

  12. Lee, S.-U., A. R. Hargens, M. Fredericson, and P. K. Lang. Lumbar spine disc heights and curvature: upright posture vs. supine compression harness. Aviat. Space Environ. Med. 74:512–516, 2003.

    PubMed  Google Scholar 

  13. Lim, T., J. Eck, H. An, and L. McGrady. A noninvasive, three-dimensional spinal motion analysis method. Spine (Phila. Pa. 1976) 22:1996–2000, 1997.

    Article  CAS  Google Scholar 

  14. McGill, S. A revised anatomical model of the abdominal musculature for torso flexion efforts. J. Biomech. 29:973–977, 1996.

    Article  CAS  PubMed  Google Scholar 

  15. Meakin, J. R., F. W. Smith, F. J. Gilbert, and R. M. Aspden. The effect of axial load on the sagittal plane curvature of the upright human spine in vivo. J. Biomech. 41:2850–2854, 2008.

    Article  PubMed  Google Scholar 

  16. Moramarco, V., A. Pérez del Palomar, C. Pappalettere, and M. Doblaré. An accurate validation of a computational model of a human lumbosacral segment. J. Biomech. 43:334–342, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. Ochia, R., N. Inoue, S. Renner, and E. Lorenz. Three-dimensional in vivo measurement of lumbar spine segmental motion. Spine (Phila. Pa. 1976) 31:2073–2078, 2006.

    Article  Google Scholar 

  18. Portney, L., and M. Watkins. Statistical measures of reliability. In: Foundations of Clinical Research. New Jersey: Prentice Hall, 2000, pp. 557–586.

  19. Pulli, K. Multiview registration for large data sets. In: Second International Conference on 3-D Digital Imaging and Modeling (Cat. No. PR00062), Vol. 1, 1999, pp. 160–168.

  20. Tupling, S., and M. Pierrynowski. Use of cardan angles to locate rigid bodies in three-dimensional space. Med. Biol. Eng. Comput. 25:527–532, 1987.

    Article  CAS  PubMed  Google Scholar 

  21. Wilke, H. J., A. Kettler, K. H. Wenger, and L. E. Claes. Anatomy of the sheep spine and its comparison to the human spine. Anat. Rec. 247:542–555, 1997.

    Article  CAS  PubMed  Google Scholar 

  22. Wisleder, D., S. L. Werner, W. J. Kraemer, S. J. Fleck, and V. M. Zatsiorsky. A method to study lumbar spine response to axial compression during magnetic resonance imaging: technical note. Spine (Phila. Pa. 1976) 26:E416–E420, 2001.

    Article  CAS  Google Scholar 

  23. Wood, K., P. Kos, M. Schendel, and K. Persson. Effect of patient position on the sagittal-plane profile of the thoracolumbar spine. J. Spinal Disord. 9:165–169, 1996.

    Article  CAS  PubMed  Google Scholar 

  24. Wu, G., and P. Cavanagh. ISB recommendations for standardization in the reporting of kinematic data. J. Biomech. 28:1257–1261, 1995.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, K., C. Yang, C. Zhao, and K.-N. An. Assessment of non-invasive intervertebral motion measurements in the lumbar spine. J. Biomech. 38:1943–1946, 2005.

    Article  PubMed  Google Scholar 

  26. Zou, J., H. Yang, M. Miyazaki, F. Wei, S. W. Hong, S. H. Yoon, Y. Morishita, and J. C. Wang. Missed lumbar disc herniations diagnosed with kinetic magnetic resonance imaging. Spine (Phila. Pa. 1976) 33:E140–E144, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

This investigation was supported by funding from the National Institutes of Health (R00AT004983). The authors thank Haolin Xu and Naji Foster for their assistance with segmentation, MRI of America (Centennial, CO) for use of the FONAR Upright MRI scanner, and Cherry Creek Imaging (Denver, CO) for use of the CT scanner.

Conflict of interest

There are no conflicts of interest related to the personal or professional associations of any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley S. Davidson.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simons, C.J., Cobb, L. & Davidson, B.S. A Fast, Accurate, and Reliable Reconstruction Method of the Lumbar Spine Vertebrae Using Positional MRI. Ann Biomed Eng 42, 833–842 (2014). https://doi.org/10.1007/s10439-013-0947-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0947-7

Keywords

Navigation