Skip to main content

Three-Dimensional Spine Reconstruction from Radiographs

  • Chapter
  • First Online:
Spinal Imaging and Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 18))

Abstract

For several musculoskeletal pathologies, single radiographic images do not offer the necessary information to portray the actual three-dimensional (3D) representation of the spine in order to assess effects such as intrinsic vertebral rotation, inter-vertebral disc wedging, spine torsion or dislocations. This limits the scope of routine diagnostic, follow-up exams, and treatment planning. Volumetric imaging modalities such as CT or MRI are on the other hand limited due to the fact that they cannot be acquired in the standing position, which is required for evaluation of posture. Biplanar radiography is still the imaging modality that is most frequently used for the 3D clinical assessment of spinal deformities. In this chapter, we present the different techniques involved for obtaining the 3D reconstruction of a spine using biplanar radiographs. First, we present different approaches (linear and non-linear) for calibrating the radiographic scene in order to configure the proper 2D-3D spatial relationship. Once the stereo-radiographic system is calibrated, anatomical landmarks or vertebral shapes constituting the spine can be identified on the radiographic images using manual identification or automated tools. Finally, using these high-level primitives located in an accurate calibrated system, a spine model can be reconstructed in 3D using a number of correspondence methods. For selected applications using reconstructed 3D spine models, we show how these techniques can help to better understand spinal pathologies such as idiopathic scoliosis, which is inherently a three-dimensional deformation of the spine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andre B, Dansereau J, Labelle H (1994) Optimized vertical stereo base radiographic setup for the clinical three-dimensional reconstruction of the human spine. J Biomech 27(8):1023–1035

    Article  Google Scholar 

  2. Aubin CE, Dansereau J, Parent S, Labelle H, de Guise JA (1997) Morphometric evaluations of personalised 3D reconstructions and geometric models of the human spine. Med Biol Eng Comput 35:611–618

    Article  Google Scholar 

  3. Benameur S, Mignotte M, Labelle H, de Guise JA (2005) A hierarchical statistical modeling approach for the unsupervised 3-D biplanar reconstruction of the scoliotic spine. IEEE Trans Biomed Eng 52:2041–2057

    Article  Google Scholar 

  4. Boisvert J, Cheriet F, Pennec X, Labelle H, Ayache N (2008) Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans Med Imag 27:557–568

    Article  Google Scholar 

  5. Charpak G (1981) Particle detection. Recherche 12(128):1384–1396

    Google Scholar 

  6. Cheng H, Bouman CA (2001) Multiscale Bayesian segmentation using a trainable context model. IEEE Trans Imag Process 10:511–525

    Article  MATH  Google Scholar 

  7. Cheriet F, Dansereau J, Petit Y, Aubin CE, Labelle H, de Guise JA (1999) Towards the self-calibration of a multiview radiographic imaging system for the 3D reconstruction of the human spine and rib cage. J Pattern Recog Artif Intell 13:761–779

    Article  Google Scholar 

  8. Cheriet F, Laporte C, Kadoury S, Labelle H, Dansereau J (2007) A novel system for the 3-D reconstruction of the human spine and rib cage from biplanar X-ray images. IEEE Trans Biomed Eng 54:1356–1358

    Article  Google Scholar 

  9. Cook L, De Smet A, Tarlton MA, Fritz S (1981) Assessment of scoliosis using three-dimensional analysis. IEEE Trans Biomed Eng 28(4):366–371

    Article  Google Scholar 

  10. Dansereau J, Stokes IA (1988) Measurements of the three-dimensional shape of the rib cage. J Biomech 21:893–901

    Article  Google Scholar 

  11. Dansereau J, Beauchamp A, Guise JD (1990) Three-dimensional reconstruction of the spine and rib cage from stereoradiographic and imaging techniques. In: 16th conference of the Canadian society of mechanical engineering

    Google Scholar 

  12. Delorme S, Petit Y, de Guise JA, Labelle H, Aubin CE, Dansereau J (2003) Assessment of the 3-D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images. IEEE Trans Biomed Eng 50:989–998

    Article  Google Scholar 

  13. Despres P, Beaudoin G, Gravel P (2005) Evaluation of a full-scale gas microstrip detector for lowdose X-rayimaging. Nucl Instrum Methods Phys Res A 536:52–60

    Google Scholar 

  14. Dumas R, Blanchard B, Carlier R, de Loubresse CG, Huec JCL, Marty C, Moinard M, Vital JM (2008) A semi-automated method using interpolation and optimisation for the 3D reconstruction of the spine from bi-planar radiography: a precision and accuracy study. Med Biol Eng Comput 46:85–92

    Article  Google Scholar 

  15. Duong L, Cheriet F, Labelle H (2006) Three-dimensional classification of spinal deformities using fuzzy clustering. Spine 31:923–930

    Article  Google Scholar 

  16. Fallavollita P, Cheriet F (2008) Optimal 3D reconstruction of coronary arteries for 3D clinical assessment. Comput Med Imag Graph 32:476–487

    Article  Google Scholar 

  17. Fleute M, Lavallee S (1999) Nonrigid 3-D/2-D registration of images using statistical models. In: Proceedings of MICCAI, vol 38, pp 138–147

    Google Scholar 

  18. Ghebreab S, Smeulders AWM (2004) Combining strings and necklaces for interactive three-dimensional segmentation of spinal images using an integral deformable spine model. IEEE Trans Biomed Eng 51:1821–1829

    Article  Google Scholar 

  19. Guo-Qing W, JianZhong Q, Schramm H (2001) Generalized dynamic programming approaches for object detection: detecting spine boundaries and vertebra endplates. In: Proceedings of IEEE conference on computer vision pattern recognition, vol 1, pp 954–959

    Google Scholar 

  20. Hamadeh A, Cinquin P (1997) Kinematic study of lumbar spine using functional radiographies and 3D/2D registration. Lect Notes Comput Sci 1205:109–118

    Article  Google Scholar 

  21. Hartley RI (1997) Self-calibration of stationary cameras. Int J Comput Vision 22:5–23

    Article  Google Scholar 

  22. Hartley R, Zisserman A (2000) Three-dimensional computer vision. Cambridge University Press, Cambridge

    Google Scholar 

  23. Howe B, Gururajan A, Sari-Sarraf H, Long LR (2004) Hierarchical segmentation of cervical and lumbar vertebrae using a customized generalized Hough transform and extensions to active appearance models. In: Proceedings of IEEE symposium image analysis interpretation, pp 182–186

    Google Scholar 

  24. Huynh T, Dansereau J, Maurais G (1997) Development of a vertebral endplate 3-D reconstruction technique. IEEE Trans Med Imaging 16(5):689–696

    Article  Google Scholar 

  25. Illés T, Somoskeoy S (2013) Comparison of scoliosis measurements based on three-dimensional vertebra vectors and conventional two-dimensional measurements: advantages in evaluation of prognosis and surgical results. Eur Spine J 22:1255–1263

    Article  Google Scholar 

  26. Kadoury S, Cheriet F, Labelle H (2009) Personalized X-ray 3D reconstruction of the scoliotic spine from statistical and image models. IEEE Trans Med Imag 28:1422–1435

    Article  Google Scholar 

  27. Kadoury S, Cheriet F, Labelle H (2010) Self-calibration of biplanar radiographic images through geometric spine shape descriptors. IEEE Trans Biomed Eng 57(7):1663–1675

    Article  Google Scholar 

  28. Kadoury S, Cheriet F, Laporte C, Labelle H (2007) A versatile 3-D reconstruction system of the spine and pelvis for clinical assessment of spinal deformities. Med Biol Eng Comput 45:591–602

    Article  Google Scholar 

  29. Kadoury S, Labelle H (2012) Classification of three-dimensional thoracic deformities in adolescent idiopathic scoliosis from a multivariate analysis. Eur Spine J 21:40–49

    Article  Google Scholar 

  30. Kadoury S, Cheriet F (2006) X-ray image restoration with adaptive PDE filter for an accurate 3D reconstruction of the human spine. In: Proceedings of international conference on computer assisted radiology surgery, vol 1, p 470

    Google Scholar 

  31. Kadoury S, Cheriet F, Labelle H (2008) A statistical image-based approach for the 3D reconstruction of the scoliotic spine from biplanar radiographs. In: Proceeding of IEEE international symposium on biomedical imaging, vol 1, pp 660–663

    Google Scholar 

  32. Kadoury S, Cheriet F, Labelle H (2009) Segmentation of scoliotic spine silhouettes from enhanced biplanar X-rays using a prior knowledge Bayesian framework. In: Proceedings of IEEE international symposium on biomedical imaging, vol 1, pp 478–481

    Google Scholar 

  33. Kaminsky J, Klinge P, Rodt T, Bokemeyer M, Luedemann W, Samii M (2004) Specially adapted interactive tools for an improved 3D-segmentation of the spine. Comput Med Imag Graph 28:119–127

    Article  Google Scholar 

  34. King H, Moe J, Bradford D et al (1983) The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am 65:1302–1313

    Google Scholar 

  35. Klinder T, Wolz R, Lorenz C, Franz A, Ostermann J (2008) Spine segmentation using articulated shape models. In: Proceedings of MICCAI, vol 11, pp 227–234

    Google Scholar 

  36. Labelle H, Dansereau J, Bellefleur C, Poitras B (1996) Three-dimensional effect of the boston brace on the thoracic spine and rib cage. Spine 21:59–64

    Article  Google Scholar 

  37. Labelle H, Dansereau J, Bellefleur C, Poitras B, Rivard CH, Stokes IA, de Guise JA (1995) Comparison between preoperative and postoperative three-dimensional reconstructions of idiopathic scoliosis with the cotrel-dubousset procedure. Spine 20:2487–2492

    Article  Google Scholar 

  38. Laporte S, Skalli W, de Guise JA, Lavaste F, Mitton D (2003) A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur. Comp Meth Biomech Biomed Eng 6:1–6

    Article  Google Scholar 

  39. Laurentini A (1994) The visual hull concept for silhouette-based image understanding. IEEE Trans Pattern Anal Mach Intell 16:150–162

    Article  Google Scholar 

  40. Li G, Zucker S (2006) Contextual inference in contour-based stereo correspondence. J Comput Vis 69:59–75

    Article  Google Scholar 

  41. Livyatan H, Yaniv Z, Joskowicz L (2003) Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT. IEEE Trans Med Imag 22:1395–1406

    Article  Google Scholar 

  42. Lorensen W, Cline H (1988) Marching cubes: a high resolution 3-D surface construction algorithm. Comput Graph 4:163–169

    Google Scholar 

  43. Lorenz C, Krahnstoever N (2000) Generation of point-based 3D statistical shape models for anatomical objects. Comput Vis Image Underst 77:175–191

    Article  Google Scholar 

  44. Marzan GT (1976) Rational design for close-range photogrammetry. Ph.D. thesis, University of Illinois, Department of Civil Engineering, Urbana-Champaign

    Google Scholar 

  45. Mitton D, Landry C, Veron S, Skalli W, Lavaste F, de Guise JA (2000) 3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med Biol Eng Comput 38:133–139

    Article  Google Scholar 

  46. Muggleton JM, Allen R (1997) Automatic location of vertebrae in digitized videofluoroscopic images of the lumbar spine. Med Eng Phys 19:77–89

    Article  Google Scholar 

  47. Novosad J, Cheriet F, Delorme S, Poirier S, Beausejour M, Labelle H (2002) Self-calibration of biplanar radiographs for a retrospective comparative study of the 3D correction of adolescent idiopathic scoliosis. Stud Health Technol Inform 91:272–275

    Google Scholar 

  48. Panjabi M, Chang D, Dvorak J (1992) An analysis of errors in kinematic parameters associated with in vivo functional radiographs. Spine 17:200–205

    Article  Google Scholar 

  49. Paragios N, Deriche R (2002) Geodesic active regions: new paradigm to deal with frame partition problems in CV. Vis Comm Image Repre 13:249–268

    Article  Google Scholar 

  50. Pomero V, Mitton D, Laporte S, de Guise JA, Skalli W (2004) Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech 19:240–247

    Article  Google Scholar 

  51. Poncet P, Dansereau J, Labelle H (2001) Geometric torsion in idiopathic scoliosis: three-dimensional analysis and proposal for a new classification. Spine 26:2235–2243

    Article  Google Scholar 

  52. Qiang J, Costa MS, Haralick RM, Shapiro LG (1999) An integrated linear technique for pose estimation from different geometric features. In: Proceedings of vision interface, pp 705–733

    Google Scholar 

  53. Rillardon L, Campana S, Mitton D, Skalli W, Feydy A (2005) Evaluation of the intervertebral disc spaces with a low dose radiographic system. J Radiol 86(3):311–319

    Article  Google Scholar 

  54. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  55. Sangole A, Aubin C, Labelle H et al (2009) Three-dimensional classification of thoracic scoliotic curves. Spine 34:91–99

    Article  Google Scholar 

  56. Simonis C, Allen R (1993) Calculation of planar spine kinematic parameters using videofluoroscopic images and parallel computation. In: Proceedings of conference on engineering in medicine and biology, pp 1087–1088

    Google Scholar 

  57. Smyth PP, Taylor CJ, Adams JE (1997) Automatic measurement of vertebral shape using active shape models. Image Vis Comput 15:575–581

    Article  Google Scholar 

  58. Somoskeoy S, Tunyogi-Csapo M, Bogyo C et al (2012) Clinical validation of coronal and sagittal spinal curve measurements based on three-dimensional vertebra vector parameter. Spine 12:960–968

    Article  Google Scholar 

  59. Stokes I, Bigalow L, Moreland M (1987) Three-dimensional spinal curvature in idiopathic scoliosis. J Orthop Res 5:102–113

    Article  Google Scholar 

  60. Tomazevic D, Likar B, Slivnik T, Pernus F (2003) 3-D/2-D registration of CT and MR to X-ray images. IEEE Trans Med Imag 22:1407–1416

    Article  Google Scholar 

  61. Villemure I, Aubin CE, Grimard G, Dansereau J, Labelle H (2001) Progression of vertebral and spinal three-dimensional deformities in adolescent idiopathic scoliosis: a longitudinal study. Spine 26:2244–2250

    Article  Google Scholar 

  62. Vrtovec T, Ourselin S, Gomes L, Likar B, Pernus F (2007) Automated generation of curved planar reformations from MR images of the spine. Phy Med Biol 52:2865–2878

    Article  Google Scholar 

  63. Vrtovec T, Tomazevic D, Likar B, Travnik L, Pernus F (2004) Automated construction of 3D statistical shape. Image Anal Stereo 23:111–120

    Article  Google Scholar 

  64. Yalin Z, Nixon MS, Allen R (2004) Automated segmentation of lumbar vertebrae in digital videofluoroscopic images. IEEE Trans Med Imag 23:45–52

    Google Scholar 

  65. Yezzi AJ, Soatto S (2003) Stereoscopic segmentation. J Comput Vis 53:31–43

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the contributions of F. Cheriet and H. Labelle in this research. Research funding was supported in part by the Fonds Quebecois de la Recherche sur la Nature et les Technologies grants, the MENTOR program from the Canadian Institutes of Health Research and the Canada Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Kadoury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kadoury, S. (2015). Three-Dimensional Spine Reconstruction from Radiographs. In: Li, S., Yao, J. (eds) Spinal Imaging and Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-12508-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12508-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12507-7

  • Online ISBN: 978-3-319-12508-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics