Skip to main content
Log in

Encapsulated Neural Stem Cell Neuronal Differentiation in Fluorinated Methacrylamide Chitosan Hydrogels

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Neural stem/progenitor cells (NSPCs) are able to differentiate into the primary cell types (neurons, oligodendrocytes and astrocytes) of the adult nervous system. This attractive property of NSPCs offers a potential solution for neural regeneration. 3D implantable scaffolds should mimic the microstructure and dynamic properties found in vivo, enabling the natural exchange of oxygen, nutrients, and growth factors for cell survival and differentiation. We have previously reported a new class of materials consisting of perfluorocarbons (PFCs) conjugated to methacrylamide chitosan (MAC), which possess the ability to repeatedly take-up and release oxygen at beneficial levels for favorable cell metabolism and proliferation. In this study, the neuronal differentiation responses of NSPCs to fluorinated methacrylamide chitosan (MACF) hydrogels were studied for 8 days. Two treatments, with oxygen reloading or without oxygen reloading, were performed during culture. Oxygen concentration distributions within cell-seeded MACF hydrogels were found to have higher concentrations of oxygen at the edge of the hydrogels and less severe drops in O2 gradient as compared with MAC hydrogel controls. Total cell number was enhanced in MACF hydrogels as the number of conjugated fluorines via PFC substitution increased. Additionally, all MACF hydrogels supported significantly more cells than MAC controls (p < 0.001). At day 8, MACF hydrogels displayed significantly greater neuronal differentiation than MAC controls (p = 0.001), and among MACF groups methacrylamide chitosan with 15 fluorines per addition (MAC(Ali15)F) demonstrated the best ability to promote NSPC differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aiedeh, K., E. Gianasi, I. Orienti, and V. Zecchi. Chitosan microcapsules as controlled release systems for insulin. J. Microencapsul. 14(5):567–576, 1997.

    Article  CAS  PubMed  Google Scholar 

  2. Arkudas, A., J. P. Beier, K. Heidner, J. Tjiawi, E. Polykandriotis, S. Srour, M. Sturzl, R. E. Horch, and U. Kneser. Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. Tissue Eng. 13(7):1549–1560, 2007.

    Article  CAS  PubMed  Google Scholar 

  3. Bagheri-Khoulenjani, S., S. M. Taghizadeh, and H. Mirzadeh. An investigation on the short-term biodegradability of chitosan with various molecular weights and degrees of deacetylation. Carbohydr. Polym. 78(4):773–778, 2009.

    Article  CAS  Google Scholar 

  4. Campos, L. S. Beta1 integrins and neural stem cells: making sense of the extracellular environment. BioEssays 27(7):698–707, 2005.

    Article  CAS  PubMed  Google Scholar 

  5. Castro, C. I., and J. C. Briceno. Perfluorocarbon-based oxygen carriers: review of products and trials. Artif. Organs 34(8):622–634, 2010.

    PubMed  Google Scholar 

  6. Cha, C., S. Y. Kim, L. Cao, and H. Kong. Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel. Biomaterials 31(18):4864–4871, 2010.

    Article  CAS  PubMed  Google Scholar 

  7. Chandler, D. Structures of molecular liquids. Annu. Rev. Phys. Chem. 29:441–471, 1978.

    Article  CAS  Google Scholar 

  8. Chang, T. M. S. Blood Substitutes: Principles, Methods, Products, and Clinical Trials. Tissue Engineering. New York: Basel Karger Landes Systems, 1997.

    Google Scholar 

  9. Chin, K., S. F. Khattak, S. R. Bhatia, and S. C. Roberts. Hydrogel-perfluorocarbon composite scaffold promotes oxygen transport to immobilized cells. Biotechnol. Prog. 24(2):358–366, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Chubb, C. Reversal of the endocrine toxicity of commercially produced perfluorochemical emulsion. Biol. Reprod. 33(4):854–858, 1985.

    Article  CAS  PubMed  Google Scholar 

  11. Chubb, C., and P. Draper. Steroid-secretion by rat testes perfused with perfluorochemicals as oxygen carriers. Am. J. Physiol. 248(4):E432–E437, 1985.

    CAS  PubMed  Google Scholar 

  12. Csete, M. Oxygen in the cultivation of stem cells. Ann. N. Y. Acad. Sci. 1–8:2005, 1049.

    Google Scholar 

  13. De Filippis, L., and D. Delia. Hypoxia in the regulation of neural stem cells. Cell. Mol. Life Sci. 68(17):2831–2844, 2011.

    Article  CAS  PubMed  Google Scholar 

  14. de Vos, P., M. M. Faas, B. Strand, and R. Calafiore. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27(32):5603–5617, 2006.

    Article  PubMed  Google Scholar 

  15. Dias, A. M. A., C. M. B. Goncalves, J. L. Legido, J. A. P. Coutinho, and I. M. Marrucho. Solubility of oxygen in substituted perfluorocarbons. Fluid Phase Equilib. 238(1):7–12, 2005.

    Article  CAS  Google Scholar 

  16. Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, and E. Horwitz. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8(4):315–317, 2006.

    Article  CAS  PubMed  Google Scholar 

  17. Drury, J. L., and D. J. Mooney. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351, 2003.

    Article  CAS  PubMed  Google Scholar 

  18. Dunn, J. C., W. Y. Chan, V. Cristini, J. S. Kim, J. Lowengrub, S. Singh, and B. M. Wu. Analysis of cell growth in three-dimensional scaffolds. Tissue Eng. 12(4):705–716, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  20. Enzmann, V., R. M. Howard, Y. Yamauchi, S. R. Whittemore, and H. J. Kaplan. Enhanced induction of RPE lineage markers in pluripotent neural stem cells engrafted into the adult rat subretinal space. Invest. Ophthalmol. Vis. Sci. 44(12):5417–5422, 2003.

    Article  PubMed  Google Scholar 

  21. Fitzpatrick, C. M., and J. D. Kerby. Blood substitutes: hemoglobin-based oxygen carriers. Oral Maxillofac. Surg. Clin. N. Am. 17(3):261–266, v–vi, 2005.

    Google Scholar 

  22. Flaim, S. F. Pharmacokinetics and side-effects of perfluorocarbon-based blood substitutes. Artif. Cells Blood Substit. Immobil. Biotechnol. 22(4):1043–1054, 1994.

    Article  CAS  PubMed  Google Scholar 

  23. Gao, W., J. C. Lai, and S. W. Leung. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications. Front Physiol. 3:321, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Gattas-Asfura, K. M., C. A. Fraker, and C. L. Stabler. Perfluorinated alginate for cellular encapsulation. J. Biomed. Mater. Res. A 100(8):1963–1971, 2012.

    Article  PubMed  Google Scholar 

  25. Goh, F., J. D. Gross, N. E. Simpson, and A. Sambanis. Limited beneficial effects of perfluorocarbon emulsions on encapsulated cells in culture: experimental and modeling studies. J. Biotechnol. 150(2):232–239, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Greenburg, A. G., and H. W. Kim. Hemoglobin-based oxygen carriers. Crit. Care 8(Suppl 2):S61–S64, 2004.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Gustafsson, M. V., X. Zheng, T. Pereira, K. Gradin, S. Jin, J. Lundkvist, J. L. Ruas, L. Poellinger, U. Lendahl, and M. Bondesson. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9(5):617–628, 2005.

    Article  CAS  PubMed  Google Scholar 

  28. Harrison, B. S., D. Eberli, S. J. Lee, A. Atala, and J. J. Yoo. Oxygen producing biomaterials for tissue regeneration. Biomaterials 28(31):4628–4634, 2007.

    Article  CAS  PubMed  Google Scholar 

  29. Huang, Y., B. Zhang, G. Xu, and W. Hao. Swelling behaviours and mechanical properties of silk fibroin–polyurethane composite hydrogels. Compos. Sci. Technol. 84:15–22, 2013.

    Article  CAS  Google Scholar 

  30. Ifkovits, J. L., and J. A. Burdick. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 13(10):2369–2385, 2007.

    Article  CAS  PubMed  Google Scholar 

  31. Johnson, A. S., R. J. Fisher, G. C. Weir, and C. K. Colton. Oxygen consumption and diffusion in assemblages of respiring spheres: performance enhancement of a bioartificial pancreas. Chem. Eng. Sci. 64(22):4470–4487, 2009.

    Article  CAS  Google Scholar 

  32. Ju, L. K., J. F. Lee, and W. B. Armiger. Enhancing oxygen-transfer in bioreactors by perfluorocarbon emulsions. Biotechnol. Prog. 7(4):323–329, 1991.

    Article  CAS  Google Scholar 

  33. Kanichai, M., D. Ferguson, P. J. Prendergast, and V. A. Campbell. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha. J. Cell. Physiol. 216(3):708–715, 2008.

    Article  CAS  PubMed  Google Scholar 

  34. Khattak, S. F., K. S. Chin, S. R. Bhatia, and S. C. Roberts. Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol. Bioeng. 96(1):156–166, 2007.

    Article  CAS  PubMed  Google Scholar 

  35. Kimelman-Bleich, N., G. Pelled, D. Sheyn, I. Kallai, Y. Zilberman, O. Mizrahi, Y. Tal, W. Tawackoli, Z. Gazit, and D. Gazit. The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based bone formation in vivo. Biomaterials 30(27):4639–4648, 2009.

    Article  CAS  PubMed  Google Scholar 

  36. Kratz, G., C. Arnander, J. Swedenborg, M. Back, C. Falk, I. Gouda, and O. Larm. Heparin-chitosan complexes stimulate wound healing in human skin. Scand. J. Plast. Reconstr. Surg. Hand Surg. 31(2):119–123, 1997.

    Article  CAS  PubMed  Google Scholar 

  37. Kresie, L. Artificial blood: an update on current red cell and platelet substitutes. Proc. (Bayl Univ. Med. Cent.) 14(2):158–161, 2001.

    CAS  Google Scholar 

  38. Kumar, G., P. J. Smith, and G. F. Payne. Enzymatic grafting of a natural product onto chitosan to confer water solubility under basic conditions. Biotechnol. Bioeng. 63(2):154–165, 1999.

    Article  CAS  PubMed  Google Scholar 

  39. Langer, R., and J. P. Vacanti. Tissue engineering. Science 260(5110):920–926, 1993.

    Article  CAS  PubMed  Google Scholar 

  40. Leipzig, N. D., and M. S. Shoichet. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30(36):6867–6878, 2009.

    Article  CAS  PubMed  Google Scholar 

  41. Leipzig, N. D., R. G. Wylie, H. Kim, and M. S. Shoichet. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 32(1):57–64, 2011.

    Article  CAS  PubMed  Google Scholar 

  42. Leung, R., D. Poncelet, and R. J. Neufeld. Enhancement of oxygen transfer rate using microencapsulated silicone oils as oxygen carriers. J. Chem. Technol. Biotechnol. 68(1):37–46, 1997.

    Article  CAS  Google Scholar 

  43. Lewis, M. C., B. D. Macarthur, J. Malda, G. Pettet, and C. P. Please. Heterogeneous proliferation within engineered cartilaginous tissue: the role of oxygen tension. Biotechnol. Bioeng. 91(5):607–615, 2005.

    Article  CAS  PubMed  Google Scholar 

  44. Li, H., A. Wijekoon, and N. D. Leipzig. 3D differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds. PLoS ONE 7(11):e48824, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lovett, M., K. Lee, A. Edwards, and D. L. Kaplan. Vascularization strategies for tissue engineering. Tissue Eng. B Rev. 15(3):353–370, 2009.

    Article  CAS  Google Scholar 

  46. Lowe, K. C. Fluorinated blood substitutes and oxygen carriers. J. Fluorine Chem. 109(1):59–65, 2001.

    Article  CAS  Google Scholar 

  47. Lutolf, M. P., J. L. Lauer-Fields, H. G. Schmoekel, A. T. Metters, F. E. Weber, G. B. Fields, and J. A. Hubbell. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. U.S.A. 100(9):5413–5418, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Madihally, S. V., and H. W. Matthew. Porous chitosan scaffolds for tissue engineering. Biomaterials 20(12):1133–1142, 1999.

    Article  CAS  PubMed  Google Scholar 

  49. Miyazaki, S., K. Ishii, and T. Nadai. The use of chitin and chitosan as drug carriers. Chem. Pharm. Bull. 29(10):3067–3069, 1981.

    Article  CAS  PubMed  Google Scholar 

  50. Mohyeldin, A., T. Garzon-Muvdi, and A. Quinones-Hinojosa. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7(2):150–161, 2010.

    Article  CAS  PubMed  Google Scholar 

  51. Morrison, S. J., M. Csete, A. K. Groves, W. Melega, B. Wold, and D. J. Anderson. Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J. Neurosci. 20(19):7370–7376, 2000.

    CAS  PubMed  Google Scholar 

  52. Oh, S. H., C. L. Ward, A. Atala, J. J. Yoo, and B. S. Harrison. Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials 30(5):757–762, 2009.

    Article  CAS  PubMed  Google Scholar 

  53. Panchision, D. M. The role of oxygen in regulating neural stem cells in development and disease. J. Cell. Physiol. 220(3):562–568, 2009.

    Article  CAS  PubMed  Google Scholar 

  54. Park, H., C. D. Vecitis, J. Cheng, W. Choi, B. T. Mader, and M. R. Hoffmann. Reductive defluorination of aqueous perfluorinated alkyl surfactants: effects of ionic headgroup and chain length. J. Phys. Chem. A 113(4):690–696, 2009.

    Article  CAS  PubMed  Google Scholar 

  55. Park, I. K., J. Yang, H. J. Jeong, H. S. Bom, I. Harada, T. Akaike, S. Kim, and C. S. Cho. Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment. Biomaterials 24(13):2331–2337, 2003.

    Article  CAS  PubMed  Google Scholar 

  56. Pistollato, F., H. L. Chen, P. H. Schwartz, G. Basso, and D. M. Panchision. Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes. Mol. Cell. Neurosci. 35(3):424–435, 2007.

    Article  CAS  PubMed  Google Scholar 

  57. Portner, R., S. Nagel-Heyer, C. Goepfert, P. Adamietz, and N. M. Meenen. Bioreactor design for tissue engineering. J. Biosci. Bioeng. 100(3):235–245, 2005.

    Article  PubMed  Google Scholar 

  58. Powers, D. E., J. R. Millman, R. B. Huang, and C. K. Colton. Effects of oxygen on mouse embryonic stem cell growth, phenotype retention, and cellular energetics. Biotechnol. Bioeng. 101(2):241–254, 2008.

    Article  CAS  PubMed  Google Scholar 

  59. Quijano, G., S. Revah, M. Gutierrez-Rojas, L. B. Flores-Cotera, and F. Thalasso. Oxygen transfer in three-phase airlift and stirred tank reactors using silicone oil as transfer vector. Process Biochem. 44(6):619–624, 2009.

    Article  CAS  Google Scholar 

  60. Richardson, S. C. W., H. J. V. Kolbe, and R. Duncan. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int. J. Pharm. 178(2):231–243, 1999.

    Article  CAS  PubMed  Google Scholar 

  61. Riess, J. G. Reassessment of criteria for the selection of perfluorochemicals for 2nd-generation blood substitutes—analysis of structure property relationships. Artif. Organs 8(1):44–56, 1984.

    Article  CAS  PubMed  Google Scholar 

  62. Riess, J. G. Oxygen carriers (“blood substitutes”)—Raison d’Etre, chemistry, and some physiology. Chem. Rev. 101(9):2797–2919, 2001.

    Article  CAS  PubMed  Google Scholar 

  63. Riess, J. G. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artif. Cells Blood Substit. Immobil. Biotechnol. 33(1):47–63, 2005.

    Article  CAS  PubMed  Google Scholar 

  64. Riess, J. G. Perfluorocarbon-based oxygen delivery. Artif. Cells Blood Substit. Immobil. Biotechnol. 34(6):567–580, 2006.

    Article  CAS  PubMed  Google Scholar 

  65. Riva, R., H. Ragelle, A. des Rieux, N. Duhem, C. Jerome, and V. Preat. Chitosan and chitosan derivatives in drug delivery and tissue engineering. Chitosan Biomater. II. 244:19–44, 2011.

    Google Scholar 

  66. Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26(8):434–441, 2008.

    Article  CAS  PubMed  Google Scholar 

  67. Saha, K., J. Kim, E. Irwin, J. Yoon, F. Momin, V. Trujillo, D. V. Schaffer, K. E. Healy, and R. C. Hayward. Surface creasing instability of soft polyacrylamide cell culture substrates. Biophys. J. 99(12):L94–L96, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Santilli, G., G. Lamorte, L. Carlessi, D. Ferrari, L. Rota Nodari, E. Binda, D. Delia, A.L. Vescovi, and L. De Filippis. Mild hypoxia enhances proliferation and multipotency of human neural stem cells. PLoS One 5(1):e8575, 2010.

    Google Scholar 

  69. Sashiwa, H., and S. I. Aiba. Chemically modified chitin and chitosan as biomaterials. Prog. Polym. Sci. 29(9):887–908, 2004.

    Article  CAS  Google Scholar 

  70. Schroeder, J. L., J. M. Highsmith, H. F. Young, and B. E. Mathern. Reduction of hypoxia by perfluorocarbon emulsion in a traumatic spinal cord injury model. J. Neurosurg. Spine 9(2):213–220, 2008.

    Article  PubMed  Google Scholar 

  71. Simon, M. C., and B. Keith. The role of oxygen availability in embryonic development and stem cell function. Nat. Rev. Mol. Cell Biol. 9(4):285–296, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Spiess, B. D. Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. J. Appl. Physiol. 106(4):1444–1452, 2009.

    Article  CAS  PubMed  Google Scholar 

  73. Spiess, B. D., and R. P. Cochran. Perfluorocarbon emulsions and cardiopulmonary bypass: a technique for the future. J. Cardiothorac. Vasc. Anesth. 10(1):83–89; quiz 89–90, 1996.

    Google Scholar 

  74. Subramanian, A., U. M. Krishnan, and S. Sethuraman. Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J. Biomed. Sci. 16:108, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Tremper, K. K., and S. T. Anderson. Perfluorochemical emulsion oxygen-transport fluids—a clinical review. Annu. Rev. Med. 36:309–313, 1985.

    Article  CAS  PubMed  Google Scholar 

  76. Turturro, M. V., M. C. Christenson, J. C. Larson, D. A. Young, E. M. Brey, and G. Papavasiliou. MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation. PLoS ONE 8(3):e58897, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Volkmer, E., I. Drosse, S. Otto, A. Stangelmayer, M. Stengele, B. C. Kallukalam, W. Mutschler, and M. Schieker. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng. A 14(8):1331–1340, 2008.

    Article  CAS  Google Scholar 

  78. Wang, J., Y. Zhu, H. K. Bawa, G. Ng, Y. Wu, M. Libera, H. C. van der Mei, H. J. Busscher, and X. Yu. Oxygen-generating nanofiber cell scaffolds with antimicrobial properties. ACS Appl. Mater. Interfaces 3(1):67–73, 2011.

    Article  CAS  PubMed  Google Scholar 

  79. White, J. C., W. L. Stoppel, S. C. Roberts, and S. R. Bhatia. Addition of perfluorocarbons to alginate hydrogels significantly impacts molecular transport and fracture stress. J. Biomed. Mater. Res. A 101A(2):438–446, 2013.

    Article  CAS  Google Scholar 

  80. Wijekoon, A., N. Fountas-Davis, and N.D. Leipzig. Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing. Acta Biomater. 9(3):5653–5664, 2012.

    Google Scholar 

  81. Yu, L. M., K. Kazazian, and M. S. Shoichet. Peptide surface modification of methacrylamide chitosan for neural tissue engineering applications. J. Biomed. Mater. Res. A 82(1):243–255, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for funding from the University of Akron that supported this work. The authors would also like to thank Dr. Rebecca Willits for allowing us to perform rheological measurements in her laboratory as well as assistance with interpreting mechanical and swelling results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nic D. Leipzig.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10439_2013_925_MOESM1_ESM.pdf

Supplementary Fig. S1 Representative images of scaffolds with no oxygen resupplementation obtained by confocal microscope at day 8 at the center of scaffolds, each picture represents a stack of 50 images with a spacing of 200 μm. MAC(Ali15)F shows the highest cell number indicated by nuclear Hoechst 33342 stain. Corresponding 3D reconstruction movies generated from these images are presented as supplemental material (Movies 5–8). Scale bar equals 100 μm (PDF 736 kb)

Supplementary material 2 (AVI 25322 kb)

Supplementary material 3 (AVI 25665 kb)

Supplementary material 4 (AVI 25322 kb)

Supplementary material 5 (AVI 25322 kb)

Supplementary material 6 (AVI 19913 kb)

Supplementary material 7 (AVI 19439 kb)

Supplementary material 8 (AVI 19439 kb)

Supplementary material 9 (AVI 19439 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Wijekoon, A. & Leipzig, N.D. Encapsulated Neural Stem Cell Neuronal Differentiation in Fluorinated Methacrylamide Chitosan Hydrogels. Ann Biomed Eng 42, 1456–1469 (2014). https://doi.org/10.1007/s10439-013-0925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0925-0

Keywords

Navigation