Skip to main content
Log in

Mitral Valve Repair Using ePTFE Sutures for Ruptured Mitral Chordae Tendineae: A Computational Simulation Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mitral valve (MV) repair using expanded polytetrafluoroethylene sutures is an established and preferred interventional method to resolve the complex pathophysiologic problems associated with chordal rupture. We developed a novel computational evaluation protocol to determine the effect of the artificial sutures on restoring MV function following valve repair. A virtual MV was created using three-dimensional echocardiographic data in a patient with ruptured mitral chordae tendineae (RMCT). Virtual repairs were designed by adding artificial sutures between the papillary muscles and the posterior leaflet where the native chordae were ruptured. Dynamic finite element simulations were performed to evaluate pre- and post-repair MV function. Abnormal posterior leaflet prolapse and mitral regurgitation was clearly demonstrated in the MV with ruptured chordae. Following virtual repair to reconstruct ruptured chordae, the severity of the posterior leaflet prolapse decreased and stress concentration was markedly reduced both in the leaflet tissue and the intact native chordae. Complete leaflet coaptation was restored when four or six sutures were utilized. Computational simulations provided quantitative information of functional improvement following MV repair. This novel simulation strategy may provide a powerful tool for evaluation and prediction of interventional treatment for RMCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bonow, R. O., B. A. Carabello, C. Kanu, A. C. de Leon, Jr., D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. O’Gara, R. A. O’Rourke, C. M. Otto, P. M. Shah, J. S. Shanewise, S. C. Smith, Jr., A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, V. Fuster, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, R. Nishimura, R. L. Page, and B. Riegel. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation 114(5):e84–231, 2006.

    Article  PubMed  Google Scholar 

  2. Bortolotti, U., A. D. Milano, and R. W. Frater. Mitral valve repair with artificial chordae: a review of its history, technical details, long-term results, and pathology. Ann. Thorac. Surg. 93(2):684–691, 2012.

    Article  PubMed  Google Scholar 

  3. Butany, J., M. J. Collins, and T. E. David. Ruptured synthetic expanded polytetrafluoroethylene chordae tendinae. Cardiovasc. Pathol. 13(3):182–184, 2004.

    Article  CAS  PubMed  Google Scholar 

  4. Calafiore, A. M. Choice of artificial chordae length according to echocardiographic criteria. Ann. Thorac. Surg. 81(1):375–377, 2006.

    Article  PubMed  Google Scholar 

  5. David, T. E., A. Omran, S. Armstrong, Z. Sun, and J. Ivanov. Long-term results of mitral valve repair for myxomatous disease with and without chordal replacement with expanded polytetrafluoroethylene sutures. J. Thorac. Cardiovasc. Surg. 115(6):1279–1285, 1998; discussion 1285–1286.

    Article  CAS  PubMed  Google Scholar 

  6. Gabbay, U., and C. Yosefy. The underlying causes of chordae tendinae rupture: a systematic review. Int. J. Cardiol. 143(2):113–118, 2010.

    Article  PubMed  Google Scholar 

  7. Grande-Allen, K. J., J. E. Barber, K. M. Klatka, P. L. Houghtaling, I. Vesely, C. S. Moravec, and P. M. McCarthy. Mitral valve stiffening in end-stage heart failure: evidence of an organic contribution to functional mitral regurgitation. J. Thorac. Cardiovasc. Surg. 130(3):783–790, 2005.

    Article  PubMed  Google Scholar 

  8. Hung, J., R. Lang, F. Flachskampf, S. K. Shernan, M. L. McCulloch, D. B. Adams, J. Thomas, M. Vannan, T. Ryan, and ASE. 3D echocardiography: a review of the current status and future directions. J. Am. Soc. Echocardiogr. 20(3):213–233, 2007.

    Article  PubMed  Google Scholar 

  9. Jensen, M. O., A. A. Fontaine, and A. P. Yoganathan. Improved in vitro quantification of the force exerted by the papillary muscle on the left ventricular wall: three-dimensional force vector measurement system. Ann. Biomed. Eng. 29(5):406–413, 2001.

    Article  CAS  PubMed  Google Scholar 

  10. Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann. Biomed. Eng. 36(2):262–275, 2008.

    Article  PubMed  Google Scholar 

  11. Kunzelman, K., M. S. Reimink, E. D. Verrier, and R. P. Cochran. Replacement of mitral valve posterior chordae tendineae with expanded polytetrafluoroethylene suture: a finite element study. J. Card. Surg. 11(2):136–145, 1996; discussion 146.

    Article  CAS  PubMed  Google Scholar 

  12. Kvitting, J. P., W. Bothe, S. Goktepe, M. K. Rausch, J. C. Swanson, E. Kuhl, N. B. Ingels, Jr., and D. C. Miller. Anterior mitral leaflet curvature during the cardiac cycle in the normal ovine heart. Circulation 122(17):1683–1689, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mansi, T., I. Voigt, B. Georgescu, X. Zheng, E. A. Mengue, M. Hackl, R. I. Ionasec, T. Noack, J. Seeburger, and D. Comaniciu. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med. Image Anal. 16(7):1330–1346, 2012.

    Article  PubMed  Google Scholar 

  14. May-Newman, K., and F. C. Yin. Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am. J. Physiol. 269(4 Pt 2):H1319–H1327, 1995.

    CAS  PubMed  Google Scholar 

  15. May-Newman, K., and F. C. Yin. A constitutive law for mitral valve tissue. J. Biomech. Eng. 120(1):38–47, 1998.

    Article  CAS  PubMed  Google Scholar 

  16. Minatoya, K., J. Kobayashi, Y. Sasako, H. Ishibashi-Ueda, C. Yutani, and S. Kitamura. Long-term pathological changes of expanded polytetrafluoroethylene (ePTFE) suture in the human heart. J. Heart Valve Dis. 10(1):139–142, 2001.

    CAS  PubMed  Google Scholar 

  17. Okamoto, Y., T. Tomino, H. Satoh, Y. Hohjo, M. Hamawaki, M. Nagashima, T. Suzuki, and K. Nakashima. The isolated congenital mitral regurgitation due to a partial defect of the anterior leaflet. Kyobu Geka 56(3):231–234, 2003.

    CAS  PubMed  Google Scholar 

  18. Padala, M., B. Cardinau, L. I. Gyoneva, V. H. Thourani, and A. P. Yoganathan. Comparison of artificial neochordae and native chordal transfer in the repair of a flail posterior mitral leaflet: an experimental study. Ann. Thorac. Surg. 95(2):629–633, 2013.

    Article  PubMed  Google Scholar 

  19. Padala, M., S. N. Powell, L. R. Croft, V. H. Thourani, A. P. Yoganathan, and D. H. Adams. Mitral valve hemodynamics after repair of acute posterior leaflet prolapse: quadrangular resection versus triangular resection versus neochordoplasty. J. Thorac. Cardiovasc. Surg. 138(2):309–315, 2009.

    Article  PubMed  Google Scholar 

  20. Pouch, A. M., C. Xu, P. A. Yushkevich, A. S. Jassar, M. Vergnat, J. H. Gorman, 3rd, R. C. Gorman, C. M. Sehgal, and B. M. Jackson. Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J. Biomech. 45(5):903–907, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Prot, V., B. Skallerud, G. Sommer, and G. A. Holzapfel. On modelling and analysis of healthy and pathological human mitral valves: two case studies. J. Mech. Behav. Biomed. Mater. 3(2):167–177, 2010.

    Article  CAS  PubMed  Google Scholar 

  22. Reimink, M. S., K. S. Kunzelman, E. D. Verrier, and R. P. Cochran. The effect of anterior chordal replacement on mitral valve function and stresses. A finite element study. ASAIO J. 41(3):M754–M762, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. Rim, Y., S. T. Laing, P. Kee, D. D. McPherson, and H. Kim. Evaluation of mitral valve dynamics. J. Am. Coll. Cardiol. Cardiovasc. Imaging 6(2):263–268, 2013.

    Article  Google Scholar 

  24. Rim, Y., D. D. McPherson, K. B. Chandran, and H. Kim. The effect of patient-specific annular motion on dynamic simulation of mitral valve function. J. Biomech. 466(6):1104–1112, 2013.

    Article  Google Scholar 

  25. Sedransk, K. L., K. J. Grande-Allen, and I. Vesely. Failure mechanics of mitral valve chordae tendineae. J. Heart Valve Dis. 11(5):644–650, 2002.

    PubMed  Google Scholar 

  26. Stevanella, M., E. Votta, and A. Redaelli. Mitral valve finite element modeling: implications of tissues’ nonlinear response and annular motion. J. Biomech. Eng. 131(12):121010, 2009.

    Article  PubMed  Google Scholar 

  27. Votta, E., E. Caiani, F. Veronesi, M. Soncini, F. M. Montevecchi, and A. Redaelli. Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. A 366(1879):3411–3434, 2008.

    Article  Google Scholar 

  28. Votta, E., T. B. Le, M. Stevanella, L. Fusini, E. G. Caiani, A. Redaelli, and F. Sotiropoulos. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46(2):217–228, 2013.

    Article  PubMed  Google Scholar 

  29. Votta, E., F. Maisano, S. F. Bolling, O. Alfieri, F. M. Montevecchi, and A. Redaelli. The Geoform disease-specific annuloplasty system: a finite element study. Ann. Thorac. Surg. 84(1):92–101, 2007.

    Article  PubMed  Google Scholar 

  30. Xu, C., C. J. Brinster, A. S. Jassar, M. Vergnat, T. J. Eperjesi, R. C. Gorman, J. H. Gorman, 3rd, and B. M. Jackson. A novel approach to in vivo mitral valve stress analysis. Am. J. Physiol. Heart Circ. Physiol. 299(6):H1790–H1794, 2010.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the National Institutes of Health (R01 HL109597, PI—Hyunggun Kim).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunggun Kim.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rim, Y., Laing, S.T., McPherson, D.D. et al. Mitral Valve Repair Using ePTFE Sutures for Ruptured Mitral Chordae Tendineae: A Computational Simulation Study. Ann Biomed Eng 42, 139–148 (2014). https://doi.org/10.1007/s10439-013-0908-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0908-1

Keywords

Navigation