Skip to main content

Repair of Mitral Valve Prolapse Through ePTFE Neochordae: A Finite Element Approach From CMR

  • Chapter
  • First Online:
Biomedical Technology

Abstract

Patient-specific finite element (FE) modeling is largely used to quantify mitral valve (MV) biomechanics associated to pathological and post-surgical conditions. We used this approach, integrated with non-invasive cardiac magnetic resonance (CMR) imaging data, to numerically perform the repair of the isolated mitral valve leaflet prolapse through expanded-polytetrafluoroethylene (ePTFE) sutures and quantitatively compare the effects of different techniques of neochordal implantation (NCI). CMR-derived FE models well reproduced MVP-related alterations and were able to assess the efficacy of each repairing technique and its biomechanical effects on MV apparatus; the quantification of biomechanical differences between NCI techniques, especially in terms of both chordal tensions and leaflet stresses redistribution, may impact on the short- and long-term the clinical outcome, potentially opening the way to patient-specific optimization of NCIs and, if extensively and successfully tested, improve surgical planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Iung, B., Baron, G., Butchart, E.G., Delahaye, F., Gohlke-Barwolf, C., Levang, O.W., et al.: A prospective survey of patients with valvular heart disease in Europe: The Euro heart Survey on valvular heart disease. Eur. Heart. J 24, 1231–1243 (2003)

    Article  Google Scholar 

  2. Bortolotti, U., Milano, A.D., Frater, R.W.: Mitral valve repair with artificial chordae: a review of its history, technical details, long-term results, and pathology. Ann. Thorac. Surg 93, 684–691 (2012)

    Article  Google Scholar 

  3. Perier, P., Hohenberger, W., Lakew, F., Batz, G., Urbanski, P., Zacher, M., et al.: Toward a new paradigm for the reconstruction of posterior leaflet prolapse: midterm results of the respect rather than resect approach. Ann. Thorac. Surg. 86, 718–725 (2008)

    Article  Google Scholar 

  4. David, T.E.: Replacement of chordae tendineae with expanded polytetrafluoroethylene sutures. J. Card. Surg. 4, 286–290 (1989)

    Article  Google Scholar 

  5. David, T.E., Omran, A., Armstrong, S., Sun, Z., Ivanov, J.: Long-term results of mitral valve repair for myxomatous disease with and without chordal replacement with expanded polytetrafluoroethylene sutures. J. Thorac. Cardiovasc. Surg. 115, 1279–1285 (1998). [discussion 85–6]

    Article  Google Scholar 

  6. Salvador, L., Mirone, S., Bianchini, R., Regesta, T., Patelli, F., Minniti, G., et al.: A 20-year experience with mitral valve repair with artificial chordae in 608 patients. J. Thorac. Cardiovasc. Surg. 135, 1280–1287 (2008)

    Article  Google Scholar 

  7. von Oppell, U.O., Mohr, F.W.: Chordal replacement for both minimally invasive and conventional mitral valve surgery using premeasured Gore-Tex loops. Ann. Thorac. Surg. 70, 2166–2168 (2000)

    Article  Google Scholar 

  8. Kudo, M., Yozu, R., Kokaji, K., Iwanaga, S.: Feasibility of mitral valve repair using the loop technique. Ann. Thorac. Cardiovasc. Surg. 13, 21–26 (2007)

    Google Scholar 

  9. Votta, E., Le, T.B., Stevanella, M., Fusini, L., Caiani, E.G., Redaelli, A., et al.: Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46, 217–228 (2013)

    Article  Google Scholar 

  10. Kunzelman, K., Reimink, M.S., Verrier, E.D., Cochran, R.P.: Replacement of mitral valve posterior chordae tendineae with expanded polytetrafluoroethylene suture: a finite element study. J. Card. Surg. 11, 136–145 (1996)

    Article  Google Scholar 

  11. Rim, Y., Laing, S.T., McPherson, D.D., Kim, H.: Mitral valve repair using ePTFE sutures for ruptured mitral chordae tendineae: a computational simulation study. Ann. Biomed. Eng. 42, 139–148 (2014)

    Article  Google Scholar 

  12. Stevanella, M., Maffessanti, F., Conti, C., Votta, E., Arnoldi, A., Lombardi, M., et al.: Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. cardiovasc. Eng. Technol. 2, 66–76 (2011)

    Google Scholar 

  13. Degandt, A.A., Weber, P.A., Saber, H.A., Duran, C.M.: Mitral valve basal chordae: comparative anatomy and terminology. Ann. Thorac. Surg. 84, 1250–1255 (2007)

    Article  Google Scholar 

  14. Lam, J.H., Ranganathan, N., Wigle, E.D., Silver, M.D.: Morphology of the human mitral valve I Chordae tendineae: a new classification. Circulation 41, 449–458 (1970)

    Article  Google Scholar 

  15. May-Newman, K., Yin, F.C.: A constitutive law for mitral valve tissue. J. Biomech. Eng. 120, 38–47 (1998)

    Article  Google Scholar 

  16. Kunzelman, K.S., Einstein, D.R., Cochran, R.P.: Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362, 1393–1406 (2007)

    Article  Google Scholar 

  17. Kunzelman, K.S., Cochran, R.P.: Mechanical properties of basal and marginal mitral valve chordae tendineae. ASAIO. Trans. 36, M405–408 (1990)

    Google Scholar 

  18. Votta, E., Maisano, F., Bolling, S.F., Alfieri, O., Montevecchi, F.M., Redaelli, A.: The Geoform disease-specific annuloplasty system: a finite element study. Ann. Thorac. Surg. 84, 92–101 (2007)

    Article  Google Scholar 

  19. Dang, M.C., Thacker, J.G., Hwang, J.C., Rodeheaver, G.T., Melton, S.M., Edlich, R.F.: Some biomechanical considerations of polytetrafluoroethylene sutures. Arch. Surg. 125, 647–650 (1990)

    Article  Google Scholar 

  20. Tesler, U.F., Cerin, G., Novelli, E., Popa, A., Diena, M.: Evolution of surgical techniques for mitral valve repair. Tex. Heart. Inst. J. 36, 438–440 (2009)

    Google Scholar 

  21. Falk, V., Seeburger, J., Czesla, M., Borger, M.A., Willige, J., Kuntze, T., et al.: How does the use of polytetrafluoroethylene neochordae for posterior mitral valve prolapse (loop technique) compare with leaflet resection? A prospective randomized trial. J. Thorac. Cardiovasc. Surg. 136, 1205 (2008). [discussion-6]

    Article  Google Scholar 

  22. Paterson-Brown, S., Cheslyn-Curtis, S., Biglin, J., Dye, J., Easmon, C.S., Dudley, H.A.: Suture materials in contaminated wounds: a detailed comparison of a new suture with those currently in use. Br. J. Surg. 74, 734–735 (1987)

    Article  Google Scholar 

  23. Calafiore, A.M.: Choice of artificial chordae length according to echocardiographic criteria. Ann. Thorac. Surg. 81, 375–377 (2006)

    Article  Google Scholar 

  24. Sarsam, M.A.: Simplified technique for determining the length of artificial chordae in mitral valve repair. Ann. Thorac. Surg. 73, 1659–1660 (2002)

    Article  Google Scholar 

  25. Scorsin, M., Al-Attar, N., Lessana, A.: A novel technique of utilizing artificial chordae for repair of mitral valve prolapse. J. Thorac. Cardiovasc. Surg. 134, 1072–1073 (2007)

    Article  Google Scholar 

  26. Maselli, D., De Paulis, R., Weltert, L., Salica, A., Scaffa, R., Bellisario, A., et al.: A new method for artificial chordae length "tuning" in mitral valve repair: preliminary experience. J. Thorac. Cardiovasc. Surg. 134, 454–459 (2007)

    Article  Google Scholar 

  27. Mandegar, M.H., Yousefnia, M.A., Roshanali, F.: Preoperative determination of artificial chordae length. Ann. Thorac. Surg. 84, 680–682 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sturla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sturla, F. et al. (2015). Repair of Mitral Valve Prolapse Through ePTFE Neochordae: A Finite Element Approach From CMR. In: Lenarz, T., Wriggers, P. (eds) Biomedical Technology. Lecture Notes in Applied and Computational Mechanics, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-10981-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10981-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10980-0

  • Online ISBN: 978-3-319-10981-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics