Skip to main content
Log in

Age and Gender Effects on the Proximal Propagation of an Impulsive Force Along the Adult Human Upper Extremity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We tested the null hypotheses that neither age, gender nor muscle pre-cocontraction state affect the latencies of changes in upper extremity kinematics or elbow muscle activity following an impulsive force to the hand. Thirty-eight healthy young and older adult volunteers lay prone on an apparatus with shoulders flexed 75° and arms slightly flexed. The non-dominant hand was subjected to three trials of impulsive loading with arm muscles precontracted to 25, 50, or 75% of maximum pre-cocontraction levels. Limb kinematic data and upper extremity electromyographic (EMG) activity were acquired. The results showed that pre-cocontraction muscle level (p < 0.001) and gender (p < 0.05 for wrist and shoulder) affected joint displacement onset times and age affected EMG onset times (p < 0.05). The peak applied force (F 1) occurred a mean (± SD) 27 (± 2) ms after impact. The latencies for the wrist, elbow, and shoulder displacements were 21 ± 3, 29 ± 5, and 34 ± 7 ms, respectively. Because the latencies for elbow flexion and lateral triceps EMG were 23 ± 5 and 84 ± 8 ms, respectively, muscle pre-activation rather than stretch reflexes prevent arm buckling under impulsive end loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Augat, P., H. Iida, Y. Jiang, E. Diao, and H. K. Genant. Distal radius fractures: mechanisms of injury and strength prediction by bone mineral assessment. J. Orthop. Res. 16:629–635, 1998.

    Article  CAS  PubMed  Google Scholar 

  2. Blanpied, P., and G. L. Smidt. The difference in stiffness of the active plantarflexors between young and elderly human females. J. Gerontol. 48:M58–M63, 1993.

    Article  CAS  PubMed  Google Scholar 

  3. Brown, M., I. Engberg, and P. Matthews. The relative sensitivity to vibration of muscle receptors of the cat. J. Physiol. 192:773–800, 1967.

    CAS  PubMed  Google Scholar 

  4. Brown, I. E., and G. E. Loeb. A reductionist approach to creating and using neuromusculoskeletal models. In: Biomechanics and Neural Control of Movement and Posture, edited by J. M. Winters, and P. E. Crago. New York: Springer, 2000, pp. 148–163.

    Chapter  Google Scholar 

  5. Burke, D., K. Hagbarth, L. Löfstedt, and B. G. Wallin. The responses of human muscle spindle endings to vibration of non-contracting muscles. J. Physiol. 261:673–693, 1976.

    CAS  PubMed  Google Scholar 

  6. Cheng, S., J. Timonen, and H. Suominen. Elastic wave propagation in bone in vivo: methodology. J. Biomech. 28:471–478, 1995.

    Article  CAS  PubMed  Google Scholar 

  7. Cuccurullo, S. Electrodiagnostic medicine and clinical neuromuscular physiology. In: Physical Medicine and Rehabilitation Board Review, edited by S. Cuccurullo. New York: Demos Medical Publishing, 2004, pp. 315–319.

    Google Scholar 

  8. Cummings, S., and M. Nevitt. Non-skeletal determinants of fractures: the potential importance of the mechanics of falls. Osteoporos. Int. 4:S67–S70, 1994.

    Article  Google Scholar 

  9. DeGoede, K., and J. Ashton-Miller. Fall arrest strategy affects peak hand impact force in a forward fall. J. Biomech. 35:843–848, 2002.

    Article  CAS  PubMed  Google Scholar 

  10. DeGoede, K., J. Ashton-Miller, and A. Schultz. Fall-related upper body injuries in the older adult: a review of the biomechanical issues. J. Biomech. 36:1043–1053, 2003.

    Article  CAS  PubMed  Google Scholar 

  11. DeGoede, K. M., J. A. Ashton-Miller, A. B. Schultz, and N. B. Alexander. Biomechanical factors affecting the peak hand reaction force during the bimanual arrest of a moving mass. J. Biomech. Eng. 124:107, 2002.

    PubMed  Google Scholar 

  12. Dietz, V., J. Noth, and D. Schmidtbleicher. Interaction between pre-activity and stretch reflex in human triceps brachii during landing from forward falls. J. Physiol. 311:113–125, 1981.

    CAS  PubMed  Google Scholar 

  13. Flynn, T., P. Cavanagh, H. Sommer, and J. Derr. Tibial flexural wave propagation in vivo: potential for bone stress injury risk assessment. Work 18:151–160, 2002.

    PubMed  Google Scholar 

  14. Frampton, R., A. Morris, P. Thomas, and G. Bodiwala. An overview of upper extremity injuries to car occupants in UK vehicle crashes. In: Proceedings of the International Research Council on the Biomechanics of Impact. Germany: Hannover, 1997.

    Google Scholar 

  15. Frykman, G. Fracture of the Distal Radius Including Sequelae—Shoulder–Hand–Finger Syndrome, Disturbance in the Distal Radio-Ulnar Joint and Impairment of Nerve Function: A Clinical and Experimental Study. Acta Orthopaedica Scandinavica Supplementum, Vol. 108. Copenhagen: Munksgaard, 1967.

    Google Scholar 

  16. Hsiao, E., and S. Robinovitch. Common protective movements govern unexpected falls from standing height. J. Biomech. 31:1–9, 1998.

    Article  CAS  PubMed  Google Scholar 

  17. Kurtzer, I., J. A. Pruszynski, and S. H. Scott. Long-latency and voluntary responses to an arm displacement can be rapidly attenuated by perturbation offset. J. Neurophysiol. 103:3195–3204, 2010.

    Article  PubMed  Google Scholar 

  18. Lee, Y., and J. A. Ashton-Miller. The effects of gender, level of co-contraction, and initial angle on elbow extensor muscle stiffness and damping under a step increase in elbow flexion moment. Ann. Biomed. Eng. 39:2542–2549, 2011.

    Article  PubMed  Google Scholar 

  19. Lo, J., and J. A. Ashton-Miller. Effect of upper and lower extremity control strategies on predicted injury risk during simulated forward falls: a study in healthy young adults. J. Biomech. Eng. 130:041015, 2008.

    Article  PubMed  Google Scholar 

  20. Lo, J., G. McCabe, K. DeGoede, H. Okuizumi, and J. Ashton-Miller. On reducing hand impact force in forward falls: results of a brief intervention in young males. Clin. Biomech. 18:730–736, 2003.

    Article  CAS  Google Scholar 

  21. McDowell, M. A., C. D. Fryar, C. L. Ogden, and K. M. Flegal. Anthropometric reference data for children and adults: United States, 2003–2006: US Department of Health and Human Services. National Center for Health Statistics: Centers for Disease Control and Prevention, 2008.

    Google Scholar 

  22. Norris, A. H., N. W. Shock, and I. H. Wagman. Age changes in the maximum conduction velocity of motor fibers of human ulnar nerves. J. Appl. Physiol. 5:589–593, 1953.

    CAS  PubMed  Google Scholar 

  23. Pierrot-Deseilligny, E., and D. Burke. The Circuitry of the Human Spinal Cord: Its Role in Motor Control and Movement Disorders. Cambridge: Cambridge University Press, pp. 63–112, 2005.

    Book  Google Scholar 

  24. Pruszynski, J. A., and S. H. Scott. Optimal feedback control and the long-latency stretch response. Exp. Brain Res. 218:341–359, 2012.

    Article  PubMed  Google Scholar 

  25. Saha, S., and R. S. Lakes. The effect of soft tissue on wave-propagation and vibration tests for determining the in vivo properties of bone. J. Biomech. 10:393–401, 1977.

    Article  CAS  PubMed  Google Scholar 

  26. Taylor, P. K. Non-linear effects of age on nerve conduction in adults. J. Neurol. Sci. 66:223–234, 1984.

    Article  CAS  PubMed  Google Scholar 

  27. Thelen, D. G., J. A. Ashton-Miller, A. B. Schultz, and N. B. Alexander. Do neural factors underlie age differences in rapid ankle torque development? J. Am. Geriatr. Soc. 44:804–808, 1996.

    CAS  PubMed  Google Scholar 

  28. Thelen, D. G., A. B. Schultz, N. B. Alexander, and J. A. Ashton-Miller. Effects of age on rapid ankle torque development. J. Gerontol. A-Biol. 51:M226–M232, 1996.

    Article  CAS  Google Scholar 

  29. Troy, K. L., and M. D. Grabiner. Asymmetrical ground impact of the hands after a trip-induced fall: experimental kinematics and kinetics. Clin. Biomech. 22:1088–1095, 2007.

    Article  Google Scholar 

  30. Tsuchikane, A., Y. Nakatsuchi, and A. Nomura. The influence of joints and soft tissue on the natural frequency of the human tibia using the impulse response method. Proc. Inst. Mech. Eng. H 209:149–155, 1995.

    Article  CAS  PubMed  Google Scholar 

  31. Winter, D. A. Biomechanics and Motor Control of Human Movement. New York: Wiley, pp. 59–85, 2005.

    Google Scholar 

  32. Wong, F. Y., S. Pal, and S. Saha. The assessment of in vivo bone condition in humans by impact response measurement. J. Biomech. 16:849–856, 1983.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Kurt M. DeGoede, Ph.D., for conducting pilot studies11 leading to this paper. We thank the subjects for their participation and the financial support of PHS Grant P30 AG 024824 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunju Lee.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y., Ashton-Miller, J.A. Age and Gender Effects on the Proximal Propagation of an Impulsive Force Along the Adult Human Upper Extremity. Ann Biomed Eng 42, 25–35 (2014). https://doi.org/10.1007/s10439-013-0900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0900-9

Keywords

Navigation