Skip to main content
Log in

Membrane-Targeting Approaches for Enhanced Cancer Cell Destruction with Irreversible Electroporation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Irreversible electroporation (IRE) is a promising technology to treat local malignant cancer using short, high-voltage electric pulses. Unfortunately, in vivo studies show that IRE suffers from an inability to destroy large volumes of cancer tissue without introduction of cytotoxic agents and/or increasing the applied electrical dose to dangerous levels. This research will address this limitation by leveraging membrane-targeting mechanisms that increase lethal membrane permeabilization. Methods that directly modify membrane properties or change the pulse delivery timing are proposed that do not rely on cytotoxic agents. This work shows that significant enhancement (67–75% more cell destruction in vitro and >100% treatment volume increase in vivo) can be achieved using membrane-targeting approaches for IRE cancer destruction. The methods introduced are surfactants (i.e., DMSO) and pulse timing which are low cost, non-toxic, and easy to be incorporated into existing clinical use. Moreover, when needed, these methods can also be combined with electrochemotherapy to further enhance IRE treatment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. We chose to use 51 pulses in the pulse timing method so that the same number of pulses (17) can be delivered in each train. The dose difference between 51 and 50 pulses in our baseline groups is marginal.

References

  1. Al-Sakere, B., F. André, C. Bernat, E. Connault, P. Opolon, R. V. Davalos, B. Rubinsky, and L. M. Mir. Tumor ablation with irreversible electroporation. PLoS ONE 2(11):e1135, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Au, J. T., T. P. Kingham, K. Jun, D. Haddad, S. Gholami, K. Mojica, S. Monette, P. Ezell, and Y. Fong. Irreversible electroporation ablation of the liver can be detected with ultrasound B-mode and elastography. Surgery 153(6):787–793, 2013.

    Article  PubMed  Google Scholar 

  3. Bao, N., T. T. Le, J.-X. Cheng, and C. Lu. Microfluidic electroporation of tumor and blood cells: observation of nucleus expansion and implications on selective analysis and purging of circulating tumor cells. Integr. Biol. (Camb.) 2(2–3):113–120, 2010.

    Article  CAS  Google Scholar 

  4. Cheng, D. K. L., L. Tung, and E. A. Sobie. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am. J. Physiol. Heart Circ. Physiol. 277(1):H351–H362, 1999.

    CAS  Google Scholar 

  5. Davalos, R. V., I. L. M. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33(2):223–231, 2005.

    Article  CAS  PubMed  Google Scholar 

  6. Davalos, R. V., B. Rubinsky, and L. M. Mir. Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61(1–2):99–107, 2003.

    Article  CAS  PubMed  Google Scholar 

  7. Deodhar, A., T. Dickfeld, G. W. Single, W. C. Hamilton, R. H. Thornton, C. T. Sofocleous, M. Maybody, M. Gónen, B. Rubinsky, and S. B. Solomon. Irreversible electroporation near the heart: ventricular arrhythmias can be prevented with ECG synchronization. AJR Am. J. Roentgenol. 196(3):W330–W335, 2011.

    Article  PubMed  Google Scholar 

  8. Deodhar, A., S. Monette, G. W. Single, Jr., W. C. Hamilton, Jr., R. Thornton, M. Maybody, J. A. Coleman, and S. B. Solomon. Renal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology 77(3):754–760, 2011.

    Article  PubMed  Google Scholar 

  9. Devireddy, R. V. Statistical thermodynamics of biomembranes. Cryobiology 60(1):80–90, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Edd, J. F., L. Horowitz, R. V. Davalos, L. M. Mir, and B. Rubinsky. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53(7):1409–1415, 2006.

    Article  PubMed  Google Scholar 

  11. Ellis, T. L., P. A. Garcia, J. H. Rossmeisl, N. Henao-Guerrero, J. Robertson, and R. V. Davalos. Nonthermal irreversible electroporation for intracranial surgical applications. J. Neurosurg. 114(3):681–688, 2011.

    Article  PubMed  Google Scholar 

  12. Fedorov, V. V., V. P. Nikolski, and I. R. Efimov. Effect of electroporation on cardiac electrophysiology. Methods Mol. Biol. 423:433–448, 2008.

    Article  PubMed  Google Scholar 

  13. Frandsen, S. K., H. Gissel, P. Hojman, T. Tramm, J. Eriksen, and J. Gehl. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res. 72(6):1336–1341, 2012.

    Article  CAS  PubMed  Google Scholar 

  14. Garcia, P. A., J. H. Rossmeisl, Jr., and R. V. Davalos. Electrical conductivity changes during irreversible electroporation treatment of brain cancer. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011:739–742, 2011.

    PubMed  Google Scholar 

  15. Garcia, P. A., J. H. Rossmeisl, Jr., R. E. Neal, 2nd, T. L. Ellis, J. D. Olson, N. Henao-Guerrero, J. Robertson, and R. V. Davalos. Intracranial nonthermal irreversible electroporation: in vivo analysis. J. Membr. Biol. 236(1):127–136, 2010.

    Article  CAS  PubMed  Google Scholar 

  16. Gehl, J. G. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 177(4):437–447, 2003.

    Article  CAS  PubMed  Google Scholar 

  17. Goel, R., K. Anderson, J. Slaton, F. Schmidlin, G. Vercellotti, J. Belcher, and J. C. Bischof. Adjuvant approaches to enhance cryosurgery. J. Biomech. Eng. 131(7):074003, 2009.

    Article  PubMed  Google Scholar 

  18. Goel, R., D. Swanlund, J. Coad, G. F. Paciotti, and J. C. Bischof. TNF-α-based accentuation in cryoinjury—dose, delivery, and response. Mol. Cancer Ther. 6(7):2039–2047, 2007.

    Article  CAS  PubMed  Google Scholar 

  19. Golberg, A., and M. L. Yarmush. Nonthermal irreversible electroporation: fundamentals, applications, and challenges. IEEE Trans. Biomed. Eng. 60(3):707–714, 2013.

    Article  PubMed  Google Scholar 

  20. Gothelf, A., L. M. Mir, and J. Gehl. Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat. Rev. 29(5):371–387, 2003.

    Article  CAS  PubMed  Google Scholar 

  21. Guo, Y., Y. Zhang, R. Klein, G. M. Nijm, A. V. Sahakian, R. A. Omary, G.-Y. Yang, and A. C. Larson. Irreversible electroporation therapy in the liver: longitudinal efficacy studies in a rat model of hepatocellular carcinoma. Cancer Res. 70(4):1555–1563, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Karatekin, E., O. Sandre, H. Guitouni, N. Borghi, P.-H. Puech, and F. Brochard-Wyart. Cascades of transient pores in giant vesicles: line tension and transport. Biophys. J. 84(3):1734–1749, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lavee, J., G. Onik, P. Mikus, and B. Rubinsky. A novel nonthermal energy source for surgical epicardial atrial ablation: irreversible electroporation. Heart Surg. Forum 10:162–167, 2007.

    Article  Google Scholar 

  24. Lee, R. C. Physical mechanisms of tissue injury in electrical trauma. IEEE Trans. Educ. 34(3):223–230, 1991.

    Article  Google Scholar 

  25. Long, G., G. Bakos, P. K. Shires, L. Gritter, J. W. Crissman, J. L. Harris, and J. W. Clymer. Histological and finite element analysis of cell death due to irreversible electroporation. TCRT Express, 2013.

  26. Lu, D. S., S. S. Raman, D. J. Vodopich, M. Wang, J. Sayre, and C. Lassman. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs assessment of the ‘heat sink’ effect. Am. J. Roentgenol. 178(1):47–51, 2002.

    Article  Google Scholar 

  27. Miller, L., J. Leor, and B. Rubinsky. Cancer cells ablation with irreversible electroporation. Technol. Cancer Res. Treat. 4(6):699–705, 2005.

    PubMed  Google Scholar 

  28. Mir, L. M. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 53(1):1–10, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Moldovan, D., D. Pinisetty, and R. V. Devireddy. Molecular dynamics simulation of pore growth in lipid bilayer membranes in the presence of edge-active agents. Appl. Phys. Lett. 91(20):204104–204104-3, 2007.

    Article  Google Scholar 

  30. Onik, G., P. Mikus, and B. Rubinsky. Irreversible electroporation: implications for prostate ablation. Technol. Cancer Res. Treat. 6(4):295–300, 2007.

    PubMed  Google Scholar 

  31. Pech, M., A. Janitzky, J. J. Wendler, C. Strang, S. Blaschke, O. Dudeck, J. Ricke, and U. B. Liehr. Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc. Intervent. Radiol. 34(1):132–138, 2011.

    Article  PubMed  Google Scholar 

  32. Powell, K. T., and J. C. Weaver. Transient aqueous pores in bilayer membranes: a statistical theory. Bioelectrochem. Bioenerg. 15(2):211–227, 1986.

    Article  Google Scholar 

  33. Qin, Z., J. Jiang, G. Long, B. Lindgren, and J. C. Bischof. Irreversible electroporation: an in vivo study with dorsal skin fold chamber. Ann. Biomed. Eng. 41:619–629, 2013.

    Article  PubMed  Google Scholar 

  34. Rubinsky, B., G. Onik, and P. Mikus. Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treat. 6(1):37–48, 2007.

    PubMed  Google Scholar 

  35. Rubinsky, J., G. Onik, P. Mikus, and B. Rubinsky. Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J. Urol. 180(6):2668–2674, 2008.

    Article  PubMed  Google Scholar 

  36. Sersa, G., T. Jarm, T. Kotnik, A. Coer, M. Podkrajsek, M. Sentjurc, D. Miklavcic, M. Kadivec, S. Kranjc, A. Secerov, and M. Cemazar. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br. J. Cancer 98(2):388–398, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Shafiee, H., P. A. Garcia, and R. V. Davalos. A preliminary study to delineate irreversible electroporation from thermal damage using the Arrhenius equation. J. Biomech. Eng. 131(7):074509, 2009.

    Article  PubMed  Google Scholar 

  38. Toner, M., and E. G. Cravalho. Kinetics and likelihood of membrane rupture during electroporation. Phys. Lett. A 143(8):409–412, 1990.

    Article  CAS  Google Scholar 

  39. Tovar, O., and L. Tung. Electroporation and recovery of cardiac cell membrane with rectangular voltage pulses. Am. J. Physiol. Heart Circ. Physiol. 263(4):H1128–H1136, 1992.

    CAS  Google Scholar 

  40. Tracy, C. R., W. Kabbani, and J. A. Cadeddu. Irreversible electroporation (IRE): a novel method for renal tissue ablation. BJU Int. 107(12):1982–1987, 2011.

    Article  PubMed  Google Scholar 

  41. Troiano, G. C., K. J. Stebe, R. M. Raphael, and L. Tung. The effects of gramicidin on electroporation of lipid bilayers. Biophys. J. 76(6):3150–3157, 1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Troiano, G. C., L. Tung, V. Sharma, and K. J. Stebe. The reduction in electroporation voltages by the addition of a surfactant to planar lipid bilayers. Biophys. J. 75(2):880–888, 1998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Tsong, T. Y. Electroporation of cell membranes. Biophys. J. 60(2):297–306, 1991.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Tung, L., G. C. Troiano, V. Sharma, R. M. Raphael, and K. J. Stebe. Changes in electroporation thresholds of lipid membranes by surfactants and peptides. Ann. N. Y. Acad. Sci. 888(1):249–265, 1999.

    Article  CAS  PubMed  Google Scholar 

  45. Weaver, J. C. Electroporation of cells and tissues. IEEE Trans. Plasma Sci. 28(1):24–33, 2000.

    Article  CAS  Google Scholar 

  46. Weaver, J. C., and Y. A. Chizmadzhev. Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41(2):135–160, 1996.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Ethicon Endo-Surgery Inc. We thank Peter Shires for helpful discussions. JCB was supported by a McKnight Distinguished Professorship and the Carl and Janet Kuhrmeyer Chair of Mechanical Engineering from the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Bischof.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, C., Qin, Z. & Bischof, J. Membrane-Targeting Approaches for Enhanced Cancer Cell Destruction with Irreversible Electroporation. Ann Biomed Eng 42, 193–204 (2014). https://doi.org/10.1007/s10439-013-0882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0882-7

Keywords

Navigation