Skip to main content
Log in

Lateral Impact Validation of a Geometrically Accurate Full Body Finite Element Model for Blunt Injury Prediction

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study presents four validation cases of a mid-sized male (M50) full human body finite element model—two lateral sled tests at 6.7 m/s, one sled test at 8.9 m/s, and a lateral drop test. Model results were compared to transient force curves, peak force, chest compression, and number of fractures from the studies. For one of the 6.7 m/s impacts (flat wall impact), the peak thoracic, abdominal and pelvic loads were 8.7, 3.1 and 14.9 kN for the model and 5.2 ± 1.1 kN, 3.1 ± 1.1 kN, and 6.3 ± 2.3 kN for the tests. For the same test setup in the 8.9 m/s case, they were 12.6, 6, and 21.9 kN for the model and 9.1 ± 1.5 kN, 4.9 ± 1.1 kN, and 17.4 ± 6.8 kN for the experiments. The combined torso load and the pelvis load simulated in a second rigid wall impact at 6.7 m/s were 11.4 and 15.6 kN, respectively, compared to 8.5 ± 0.2 kN and 8.3 ± 1.8 kN experimentally. The peak thorax load in the drop test was 6.7 kN for the model, within the range in the cadavers, 5.8–7.4 kN. When analyzing rib fractures, the model predicted Abbreviated Injury Scale scores within the reported range in three of four cases. Objective comparison methods were used to quantitatively compare the model results to the literature studies. The results show a good match in the thorax and abdomen regions while the pelvis results over predicted the reaction loads from the literature studies. These results are an important milestone in the development and validation of this globally developed average male FEA model in lateral impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bazarian, J. J., S. G. Fisher, W. Flesher, R. Lillis, K. L. Knox, and T. A. Pearson. Lateral automobile impacts and the risk of traumatic brain injury. Ann. Emerg. Med. 44:142–152, 2004.

    Article  PubMed  Google Scholar 

  2. Beeman, S. M., A. R. Kemper, M. L. Madigan, and S. M. Duma. Effects of bracing on human kinematics in low-speed frontal sled tests. Ann. Biomed. Eng. 39:2998–3010, 2011.

    Article  PubMed  Google Scholar 

  3. Beillas, P., and F. Berthet. Performance of a 50th percentile abdominal model for impact: effect of size and mass. In: European Society of Biomechanics Conference, 2012.

  4. Bidal, S. Improving human model, examples of applications. In: European HyperWorks Technology Conference, Strasbourg, France, 2008.

  5. Cavanaugh, J. M., T. J. Walilko, A. Malhotra, Y. Zhu, and A. I. King. Biomechanical Response and Injury Tolerance of the Pelvis in Twelve Sled Side Impacts. SAE, p. 16, 1990.

  6. Cavanaugh, J. M., T. J. Walilko, A. Malhotra, Y. Zhu, and A. I. King, Biomechanical Response and Injury Tolerance of the Thorax in Twelve Sled Side Impacts, SAE, 1990.

  7. DeWit, J. A., and D. S. Cronin. Cervical spine segment finite element model for traumatic injury prediction. J. Mech. Behav. Biomed. Mater. 10:138–150, 2012.

    Article  PubMed  Google Scholar 

  8. Documentation of Total Human Model for Safety (THUMS) AM50 Pedestrian/Occupant Model. Toyota Motor Corporation, 2010.

  9. Eppinger, R. H. Prediction of thoracic injuries using measurable experimental parameters. In: Proceedings of the Sixth International Technical Conference on the Enhanced Safety of Vehicles (ESV), 1976.

  10. Fice, J. B., D. S. Cronin, and M. B. Panzer. Cervical spine model to predict capsular ligament response in rear impact. Ann. Biomed. Eng. 39:2152–2162, 2011.

    Article  PubMed  Google Scholar 

  11. Gayzik, F., D. Moreno, K. Danelson, C. McNally, K. Klinich, and J. Stitzel. External landmark, body surface, and volume data of a mid-sized male in seated and standing postures. Ann. Biomed. Eng. Epub: 23 March 2012, 2012.

  12. Gayzik, F. S., C. A. Hamilton, J. C. Tan, C. McNally, S. M. Duma, K. D. Klinich, and J. D. Stitzel. Multi-modality image data collection protocol for full body finite element model development. In: SAE Digital Human Modeling Gothenburg. Sweden: SAE, 2009.

  13. Gayzik, F. S., R. S. Martin, H. C. Gabler, J. J. Hoth, S. M. Duma, J. W. Meredith, and J. D. Stitzel. Characterization of crash-induced thoracic loading resulting in pulmonary contusion. J. Trauma 66:840–849, 2009.

    Article  PubMed  Google Scholar 

  14. Gayzik, F. S., D. M. Moreno, C. P. Geer, S. D. Wuertzer, R. S. Martin, and J. D. Stitzel. Development of a full body CAD dataset for computational modeling: a multi-modality approach. Ann. Biomed. Eng. 39:2568–2583, 2011.

    Article  PubMed  CAS  Google Scholar 

  15. Gayzik, F. S., M. Yu, K. A. Danelson, D. E. Slice, and J. D. Stitzel. Quantification of age-related change of the human rib cage through geometric morphometrics. J. Biomech. 41:1545–1554, 2008.

    Article  PubMed  Google Scholar 

  16. Global status report on road safety, 1 ed. Geneva, Switzerland: W. H. Organization, 2009.

  17. Gordon, C., T. Churchill, C. Clauser, B. Bradtmiller, J. McConville, I. Tebbetts, and R. Walker. 1988 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics. P. f. U. S. A. N. R. D. a. E. Center, Ed., 1989.

  18. Huang, Y., A. I. King, and J. M. Cavanaugh. Finite element modeling of gross motion of human cadavers in side impact. SAE 103:19, 1994.

    Google Scholar 

  19. ISO TR 9790: Road vehicles—anthropomorphic side impact dummy—lateral impact response requirements to assess the biofidelity of the dummy. I. O. f. Standardization, Ed., 1999.

  20. Iwamoto, M., Y. Kisanuki, I. Wantanabe, K. Furusu, K. Miki, and J. Hasegawa. Development of a finite element model of the Total Human Model for Safety (THUMS) and application to injury reconstruction. In: International Research Council on the Biomechanics of Injury (IRCOBI). Munich, Germany, 2002.

  21. Kallieris, D., R. Mattern, G. Schmidt, and R. H. Eppinger. Quantification of Side Impact Responses and Injuries. SAE, p. 38, 1981.

  22. Katyal, D., B. A. McLellan, F. D. Brenneman, B. R. Boulanger, P. W. Sharkey, and J. P. Waddell. Lateral impact motor vehicle collisions: significant cause of blunt traumatic rupture of the thoracic aorta. J. Trauma Acute Care Surg. 42:769–772, 1997.

    Article  CAS  Google Scholar 

  23. Kemper, A. R., C. McNally, and S. M. Duma. Dynamic tensile material properties of human pelvic cortical bone. International IS Biomedical Sciences Instrumentation Symposium, 2008.

  24. Kemper, A. R., C. McNally, E. A. Kennedy, S. J. Manoogian, and S. M. Duma. The influence of arm position on thoracic response in side impacts. Stapp Car Crash J. 52:379–420, 2008.

    PubMed  Google Scholar 

  25. Kemper, A. R., A. C. Santago, J. D. Stitzel, J. L. Sparks, and S. M. Duma. Biomechanical response of human spleen in tensile loading. J. Biomech. 45:348–355, 2012.

    Article  PubMed  Google Scholar 

  26. Kent, R., S. H. Lee, K. Darvish, S. Wang, C. S. Poster, A. W. Lange, C. Brede, D. Lange, and F. Matsuoka. Structural and material changes in the aging thorax and their role in crash protection for older occupants. Stapp Car Crash J. 49:231–249, 2005.

    PubMed  Google Scholar 

  27. Kim, Y. H., J. E. Kim, and A. Eberhardt. Finite element simulation of pelvic fractures in side impacts. In: ASME Summer Bioengineering Conference. Fajardo, PR, 2012.

  28. Kimpara, H., J. B. Lee, K. H. Yang, A. I. King, M. Iwamoto, I. Watanabe, and K. Miki. Development of a three-dimensional finite element chest model for the 5(th) percentile female. Stapp Car Crash J. 49:251–269, 2005.

    PubMed  Google Scholar 

  29. Li, Z., M. W. Kindig, J. R. Kerrigan, C. D. Untaroiu, D. Subit, J. R. Crandall, and R. W. Kent. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study. J. Biomech. 43:228–234, 2010.

    Article  PubMed  Google Scholar 

  30. Li, Z., M. W. Kindig, D. Subit, and R. W. Kent. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction. Med. Eng. Phys. 32:998–1008, 2010.

    Article  PubMed  Google Scholar 

  31. Lizee, E., S. Robin, E. Song, N. Bertholon, J.-Y. L. Coz, B. Besnault, and F. Lavaste. Development of a 3D finite element model of the human body. Stapp Car Crash J. 42:124–149, 1998.

    Google Scholar 

  32. Maltese, M. R., R. H. Eppinger, H. H. Rhule, B. R. Donnelly, F. A. Pintar, and N. Yoganandan. Response corridors of human surrogates in lateral impacts. Stapp Car Crash J. 46:321–351, 2002.

    PubMed  Google Scholar 

  33. Mao, H., L. Zhang, B. Jiang, V. V. Genthikatti, X. Jin, F. Zhu, R. Makwana, A. Gill, G. Jandir, A. Singh, and K. H. Yang. Recent advances in developing finite element head model. In: International Crashworthiness Conference. Milan, Italy, 2012.

  34. Mizuno, K., K. Iwata, T. Deguchi, T. Ikami, and M. Kubota. Development of a three-year-old child FE model. Traffic Injury Prev. 6:361–371, 2005.

    Article  Google Scholar 

  35. NHTSA. Biomechanics Test Database, 2012.

  36. Pintar, F. A., N. Yoganandan, M. H. Hines, M. R. Maltese, J. McFadden, R. Saul, R. Eppinger, N. Khaewpong, and M. Kleinberger. Chestband analysis of human tolerance to side impact. Stapp Car Crash J. 41:63–74, 1997.

    Google Scholar 

  37. Rhule, H. H., M. R. Maltese, B. R. Donnelly, R. H. Eppinger, J. K. Brunner, and J. H. Bolte. Development of a new biofidelity ranking system for anthropomorphic test devices. Stapp Car Crash J. 46:477–512, 2002.

    PubMed  Google Scholar 

  38. Robbins, D. H., J. W. Melvin, D. F. Huelke, and H. W. Sherman. Biomechanical accident investigation methodology using analytical techniques. Stapp Car Crash J. 27:105–118, 1983.

  39. Robin, S. Human Model for Safety—a joint effort towards the development of redefined human-like car-occupant models. In: 17th International Conference for the Enhanced Safety of Vehicles. Amsterdam, 2001.

  40. Ruan, J. S., R. El-Jawahri, S. Barbat, and P. Prasad. Biomechanical analysis of human abdominal impact responses and injuries through finite element simulations of a full human body model. Stapp Car Crash J. 49:343–366, 2005.

    PubMed  Google Scholar 

  41. Ruan, J., R. El-Jawahri, L. Chai, S. Barbat, and P. Prasad. Prediction and analysis of human thoracic impact responses and injuries in cadaver impacts using a full human body finite element model. Stapp Car Crash J. 47:299–321, 2003.

    PubMed  Google Scholar 

  42. Ruan, J. S., R. El-Jawahri, S. W. Rouhana, S. Barbat, and P. Prasad. Analysis and evaluation of the biofidelity of the human body finite element model according to ISO-TR9790 procedures. Stapp Car Crash J. 50:491–507, 2006.

    PubMed  Google Scholar 

  43. Serre, T., C. Brunet, K. Bruyere, J. P. Verriest, D. Mitton, S. Bertrand, and W. Skalli. HUMOS (Human Model for Safety) Geometry: from one specimen to the 5th and 95th percentile. SAE Technical Paper 2006-01-2324, 2006.

  44. Shigeta, K., Y. Kitagawa, and T. Yasuki. Development of next generation human FE model capable of organ injury prediction. In: Enhanced Safety of Vehicles Stuttgart. Germany: NHTSA, 2009.

  45. Shin, J., N. Yue, and C. D. Untaroiu. A finite element model of the foot and ankle for automotive impact applications. Ann. Biomed. Eng. 2012.

  46. Song, E., L. Fontaine, X. Trosseille, and H. Guillemot. Pelvis bone fracture modeling in lateral impact. Proceedings: International Technical Conference on the Enhanced Safety of Vehicles, vol. 2005, pp. 13p–13p, 2005.

  47. Spitzer, V., M. Ackerman, A. Scherzinger, and D. Whitlock. The visible human male: a technical report. JAMIA 3:118–130, 1996.

    PubMed  CAS  Google Scholar 

  48. Sprague, M. A., and T. L. Geers. A spectral-element method for modelling cavitation in transient fluid-structure interaction. Int. J. Numer. Methodol. Eng. 60:2467–2499, 2004.

    Google Scholar 

  49. Stalnaker, R., C. Tarrière, A. Fayon, G. Walfisch, M. Balthazard, J. Masset, C. Got, and A. Patel. Modification of part 572 dummy for lateral impact according to biomechanical data. Stapp Car Crash J. 23:843–872, 1979.

    Google Scholar 

  50. Stitzel, J. D., P. D. Kilgo, A. A. Weaver, R. S. Martin, K. L. Loftis, and J. W. Meredith. Age thresholds for increased mortality of predominant crash induced thoracic injuries. Annu. Proc. Assoc. Adv. Automot. Med. 54:41–50, 2010.

    Google Scholar 

  51. Thompson, A. B., A. C. Rhyne, D. P. Moreno, F. S. Gayzik, and J. D. Stitzel. Methods for validation of the mass distribution of a full body finite element model—biomed 2011. Biomed. Sci. Instrum. 47:100–105, 2011.

    PubMed  Google Scholar 

  52. Vander-Lugt, D., T. Connolly, and D. Bhalsod. Vehicle compatibility—analysis of the factors influencing side impact occupant injury. In: Proceedings of the SAE International Congress and Exposition. Detroit, MI, 1999.

  53. Weaver, A. A., E. A. Kennedy, S. M. Duma, and J. D. Stitzel. Evaluation of different projectiles in matched experimental eye impact simulations. J. Biomech. Eng. 133:031002, 2011.

    Article  PubMed  Google Scholar 

  54. Weaver, A. A., K. L. Loftis, S. M. Duma, and J. D. Stitzel. Biomechanical modeling of eye trauma for different orbit anthropometries. J. Biomech. 44:1296–1303, 2011.

    Article  PubMed  Google Scholar 

  55. Yang, K. H., J. Hu, N. A. White, A. I. King, C. C. Chou, and P. Prasad. Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp Car Crash Conference. Stapp Car Crash J. 50:429–490, 2006.

    PubMed  Google Scholar 

  56. Yoganandan, N., F. A. Pintar, B. D. Stemper, T. A. Gennarelli, and J. A. Weigelt. Biomechanics of side impact: injury criteria, aging occupants, and airbag technology. J. Biomech. 40:227–243, 2007.

    Article  PubMed  Google Scholar 

  57. Yue, N., J. Shin, C. D. Untaroiu. Development and validation of an occupant lower limb Finite element model. SAE Technical Paper 2011-01-1128, 2011.

Download references

Acknowledgments

The authors would like to acknowledge the Global Human Body Models Consortium, LLC for funding and support. Wake Forest University is the Integration Center of Expertise of the Global Human Body Models Consortium. The authors gratefully acknowledge the regional model development efforts by our academic university partners in the GHBMC including King Yang and Liying Zhang (Wayne State U., USA), Duane Cronin (U. Waterloo, Canada), Richard Kent and Damien Subit (U. Virginia, USA), Philippe Beillas (IFSTARR, France), Warren Hardy (Virginia Tech, USA), Costin Untaroiu and Jeff Crandall (U. Virginia, USA), and Alan Eberhardt (U. Alabama Birmingham, USA). The authors would also like to acknowledge the assistance of Drs. Timothy Miller and David Chin with the DEAC cluster.

Conflict of interest

The authors have no conflicts of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Scott Gayzik.

Additional information

Associate Editor Stefan M Duma oversaw the review of this article.

Appendix

Appendix

See Table 6.

Table 6 Experimental ranges and model values for comparison outputs in sled cases

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vavalle, N.A., Moreno, D.P., Rhyne, A.C. et al. Lateral Impact Validation of a Geometrically Accurate Full Body Finite Element Model for Blunt Injury Prediction. Ann Biomed Eng 41, 497–512 (2013). https://doi.org/10.1007/s10439-012-0684-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0684-3

Keywords

Navigation