Skip to main content

Advertisement

Log in

Finite Element Modeling of Mitral Valve Dynamic Deformation Using Patient-Specific Multi-Slices Computed Tomography Scans

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to develop a patient-specific finite element (FE) model of a human mitral valve. The geometry of the mitral valve was reconstructed from multi-slice computed tomography (MSCT) scans at middle diastole with distinguishable mitral leaflet thickness, chordal origins, chordal insertion points, and papillary muscle locations. Mitral annulus and papillary muscle dynamic motions were also quantified from MSCT scans and prescribed as boundary conditions for the FE simulation. Material properties of the human mitral leaflet tissues were obtained from biaxial tests and characterized by an anisotropic hyperelastic material model. In vivo dynamic closing of the mitral valve was simulated. The closed shape of the mitral valve output from the simulation was similar to the mitral valve geometry reconstructed from MSCT images at middle systole. Forces from the anterolateral and posteromedial papillary muscle groups at middle systole were 4.51 N and 5.17 N, respectively. The average maximum principal stress of the midsection of the anterior mitral leaflet was approximately 160 kPa at the systolic peak. Results demonstrated that the developed FE model could closely replicate in vivo mitral valve dynamic motion during middle diastole and systole. This model may serve as a basis for utilizing computational simulations to obtain a better understanding of mitral valve mechanics, disease and surgical repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Auricchio, F., M. Conti, S. Morganti, and P. Totaro. A computational tool to support pre-operative planning of stentless aortic valve implant. Med. Eng. Phys. 33:1183–1192, 2011.

    Article  PubMed  CAS  Google Scholar 

  2. Bothe, W., J. P. Kvitting, J. C. Swanson, S. Goktepe, K. N. Vo, N. B. Ingels, and D. C. Miller. How do annuloplasty rings affect mitral leaflet dynamic motion? Eur. J. Cardiothorac. Surg. 38:340–349, 2011.

    Article  Google Scholar 

  3. Bothe, W., J. P. Kvitting, J. C. Swanson, S. Hartnett, N. B. Ingels, Jr., and D. C. Miller. Effects of different annuloplasty rings on anterior mitral leaflet dimensions. J. Thorac. Cardiovasc. Surg. 139:1114–1122, 2011.

    Article  Google Scholar 

  4. Conti, C. A., E. Votta, A. Della Corte, L. Del Viscovo, C. Bancone, M. Cotrufo, and A. Redaelli. Dynamic finite element analysis of the aortic root from MRI-derived parameters. Med. Eng. Phys. 32:212–221, 2010.

    Google Scholar 

  5. Dwyer, H. A., P. B. Matthews, A. Azadani, L. Ge, T. S. Guy, and E. E. Tseng. Migration forces of transcatheter aortic valves in patients with noncalcific aortic insufficiency. J. Thorac. Cardiovasc. Surg. 138:1227–1233, 2009.

    Article  PubMed  Google Scholar 

  6. Eckert, C. E., B. Zubiate, M. Vergnat, J. H. Gorman, III, R. C. Gorman, and M. S. Sacks. In vivo dynamic deformation of the mitral valve annulus. Ann. Biomed. Eng. 37:1757–1771, 2009.

    Article  PubMed  Google Scholar 

  7. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.

    Article  PubMed  Google Scholar 

  8. Gogoladze, G., S. L. Dellis, R. Donnino, G. Ribakove, D. G. Greenhouse, A. Galloway, and E. Grossi. Analysis of the mitral coaptation zone in normal and functional regurgitant valves. Ann. Thorac. Surg. 89:1158–1161, 2010.

    Article  PubMed  Google Scholar 

  9. Grewal, J., R. Suri, S. Mankad, A. Tanaka, D. W. Mahoney, H. V. Schaff, F. A. Miller, and M. Enriquez-Sarano. Mitral annular dynamics in myxomatous valve disease: new insights with real-time 3-dimensional echocardiography. Circulation 121:1423–1431, 2010.

    Article  PubMed  Google Scholar 

  10. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  11. Jensen, M. O., A. A. Fontaine, and A. P. Yoganathan. Improved in vitro quantification of the force exerted by the papillary muscle on the left ventricular wall: three-dimensional force vector measurement system. Ann. Biomed. Eng. 29:406–413, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Jimenez, J. H., S. W. Liou, M. Padala, Z. He, M. Sacks, R. C. Gorman, J. H. Gorman, III, and A. P. Yoganathan. A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. J. Thorac. Cardiovasc. Surg. 134:1562–1568, 2007.

    Article  PubMed  Google Scholar 

  13. Jimenez, J. H., D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003.

    Article  PubMed  Google Scholar 

  14. Krishnamurthy, G., D. B. Ennis, A. Itoh, W. Bothe, J. C. Swanson, M. Karlsson, E. Kuhl, D. C. Miller, and N. B. Ingels, Jr. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am. J. Physiol. Heart Circ. Physiol. 295:H1141–H1149, 2008.

    Article  PubMed  CAS  Google Scholar 

  15. Krishnamurthy, G., A. Itoh, W. Bothe, J. C. Swanson, E. Kuhl, M. Karlsson, D. Craig Miller, and N. B. Ingels, Jr. Stress-strain behavior of mitral valve leaflets in the beating ovine heart. J. Biomech. 42:1909–1916, 2009.

    Article  PubMed  Google Scholar 

  16. Kunzelman, K. S., and R. P. Cochran. Mechanical properties of basal and marginal mitral valve chordae tendineae. ASAIO Trans. 36:M405–M408, 1990.

    PubMed  CAS  Google Scholar 

  17. Kunzelman, K. S., R. P. Cochran, E. D. Verrier, and R. C. Eberhart. Anatomic basis for mitral valve modelling. J. Heart Valve Dis. 3:491–496, 1994.

    PubMed  CAS  Google Scholar 

  18. Kunzelman, K. S., D. R. Einstein, and R. P. Cochran. Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362:1393–1406, 2007.

    Article  PubMed  CAS  Google Scholar 

  19. Labrosse, M. R., K. Lobo, and C. J. Beller. Structural analysis of the natural aortic valve in dynamics: from unpressurized to physiologically loaded. J. Biomech. 43:1916–1922, 2010.

    Article  PubMed  Google Scholar 

  20. Lembo, N. J., L. J. Dell’Italia, M. H. Crawford, J. F. Miller, K. L. Richards, and R. A. O’Rourke. Mitral valve prolapse in patients with prior rheumatic fever. Circulation 77:830–836, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Liao, J., and I. Vesely. A structural basis for the size-related mechanical properties of mitral valve chordae tendineae. J. Biomech. 36:1125–1133, 2003.

    Article  PubMed  Google Scholar 

  22. Maisano, F., G. La Canna, A. Colombo, and O. Alfieri. The evolution from surgery to percutaneous mitral valve interventions: the role of the edge-to-edge technique. J. Am. Coll. Cardiol. 58:2174–2182, 2011.

    Article  PubMed  Google Scholar 

  23. Mangini, A., M. G. Lemma, M. Soncini, E. Votta, M. Contino, R. Vismara, A. Redaelli, and C. Antona. The aortic interleaflet triangles annuloplasty: a multidisciplinary appraisal. Eur. J. Cardiothorac. Surg. 40:851–857, 2011.

    PubMed  Google Scholar 

  24. Padala, M., R. A. Hutchison, L. R. Croft, J. H. Jimenez, R. C. Gorman, J. H. Gorman, III, M. S. Sacks, and A. P. Yoganathan. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann. Thorac. Surg. 88:1499–1504, 2009.

    Article  PubMed  Google Scholar 

  25. Prot, V., B. Skallerud, G. Sommer, and G. A. Holzapfel. On modelling and analysis of healthy and pathological human mitral valves: two case studies. J. Mech. Behav. Biomed. Mater. 3:167–177, 2010.

    Article  PubMed  CAS  Google Scholar 

  26. Rausch, M. K., W. Bothe, J. P. Kvitting, S. Goktepe, D. C. Miller, and E. Kuhl. In vivo dynamic strains of the ovine anterior mitral valve leaflet. J. Biomech. 44:1149–1157, 2011.

    Article  PubMed  Google Scholar 

  27. Ryan, L. P., B. M. Jackson, T. J. Eperjesi, T. J. Plappert, M. St John-Sutton, R. C. Gorman, and J. H. Gorman, III. A methodology for assessing human mitral leaflet curvature using real-time 3-dimensional echocardiography. J. Thorac. Cardiovasc. Surg. 136:726–734, 2008.

    Article  PubMed  Google Scholar 

  28. Sacks, M. S., Y. Enomoto, J. R. Graybill, W. D. Merryman, A. Zeeshan, A. P. Yoganathan, R. J. Levy, R. C. Gorman, and J. H. Gorman, III. In vivo dynamic deformation of the mitral valve anterior leaflet. Ann. Thorac. Surg. 82:1369–1377, 2006.

    Article  PubMed  Google Scholar 

  29. Sacks, M. S., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, and A. P. Yoganathan. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30:1281–1290, 2002.

    Article  PubMed  CAS  Google Scholar 

  30. Sacks, M. S., and W. Sun. Multiaxial mechanical behavior of biological materials. Annu. Rev. Biomed. Eng. 5:251–284, 2003.

    Article  PubMed  CAS  Google Scholar 

  31. Skallerud, B., V. Prot, and I. S. Nordrum. Modeling active muscle contraction in mitral valve leaflets during systole: a first approach. Biomech. Model. Mechanobiol. 10:11–26, 2011.

    Article  PubMed  CAS  Google Scholar 

  32. Stevanella, M., F. Maffessanti, C. A. Conti, E. Votta, A. Arnoldi, M. Lombardi, O. Parodi, E. G. Caiani, and A. Redaelli. Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovasc. Eng. Technol. 2:66–76, 2011.

    Article  Google Scholar 

  33. Sun, W., and M. Sacks. Finite element implementation of a generalized Fung-elastic constitutive model for planar tissues. Biomech. Model. Mechanobiol. 4:190–199, 2005.

    Article  PubMed  Google Scholar 

  34. Verhey, J. F., N. S. Nathan, O. Rienhoff, R. Kikinis, F. Rakebrandt, and M. N. D’Ambra. Finite-element-method (FEM) model generation of time-resolved 3D echocardiographic geometry data for mitral-valve volumetry. Biomed. Eng. Online 5:17, 2006.

    Article  PubMed  Google Scholar 

  35. Votta, E., E. Caiani, F. Veronesi, M. Soncini, F. M. Montevecchi, and A. Redaelli. Mitral valve finite-element modelling from ultrasound data: A pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. R. Soc. Lond. Ser. A 366:3411–3434, 2008.

    Google Scholar 

  36. Wang, Q., G. Book, S. Contreras Ortiz, C. Primiano, R. McKay, S. Kodali, and W. Sun. Dimensional analysis of aortic root geometry during diastole using 3D models reconstructed from clinical 64-slice computed tomography images. Cardiovasc. Eng. Technol. 2:324–333, 2011.

    Article  Google Scholar 

  37. Weinberg, E. J., and M. R. Kaazempur Mofrad. A finite shell element for heart mitral valve leaflet mechanics, with large deformations and 3D constitutive material model. J. Biomech. 40:705–711, 2007.

    Article  PubMed  Google Scholar 

  38. Wenk, J. F., Z. Zhang, G. Cheng, D. Malhotra, G. Acevedo-Bolton, M. Burger, T. Suzuki, D. A. Saloner, A. W. Wallace, J. M. Guccione, and M. B. Ratcliffe. First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann. Thorac. Surg. 89:1546–1553, 2010.

    Article  PubMed  Google Scholar 

  39. Xu, C., C. J. Brinster, A. S. Jassar, M. Vergnat, T. J. Eperjesi, R. C. Gorman, J. H. Gorman, III, and B. M. Jackson. A novel approach to in vivo mitral valve stress analysis. Am. J. Physiol. Heart Circ. Physiol. 299:H1790–H1794, 2010.

    Article  PubMed  CAS  Google Scholar 

  40. Yuksel, U. C., S. R. Kapadia, and E. M. Tuzcu. Percutaneous mitral repair: patient selection, results, and future directions. Curr. Cardiol. Reports 13:100–106, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the AHA SDG grant 0930319N. We would like to thank Dr. Charles Primiano and Dr. Raymond McKay at the Hartford Hospital, CT for providing the image data. We would also like to thank our lab member Thuy Pham for providing experimental data of the mitral tissues.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Sun, W. Finite Element Modeling of Mitral Valve Dynamic Deformation Using Patient-Specific Multi-Slices Computed Tomography Scans. Ann Biomed Eng 41, 142–153 (2013). https://doi.org/10.1007/s10439-012-0620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0620-6

Keywords

Navigation