Skip to main content
Log in

Mechanics of a Fiber Network Within a Non-Fibrillar Matrix: Model and Comparison with Collagen-Agarose Co-gels

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

While collagen is recognized as the predominant mechanical component of soft connective tissues, the role of the non-fibrillar matrix (NFM) is less well understood. Even model systems, such as the collagen-agarose co-gel, can exhibit complex behavior, making it difficult to identify relative contributions of specific tissue constituents. In the present study, we developed a two-component microscale model of collagen-agarose tissue analogs and used it to elucidate the interaction between collagen and NFM in uniaxial tension. Collagen fibers were represented with Voronoi networks, and the NFM was modeled as a neo-Hookean solid. Model predictions of total normal stress and Poisson’s ratio matched experimental observations well (including high Poisson’s values of ~3), and the addition of NFM led to composition-dependent decreases in volume change and increases in fiber stretch. Because the NFM was more resistant to volume change than the fiber network, extension of the composite led to pressurization of the NFM. Within a specific range of parameter values (low shear modulus and moderate Poisson’s ratio), the magnitude of the reaction force decreased relative to this pressurization component resulting in a negative (compressive) NFM stress in the loading direction, even though the composite tissue was in tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adeeb, S., et al. Modelling the behaviour of ligaments: a technical note. Comput. Methods Biomech. Biomed. Eng. 7(1):33–42, 2004.

    Article  Google Scholar 

  2. Amoroso, N. J., et al. Elastomeric electrospun polyurethane scaffolds: the interrelationship between fabrication conditions, fiber topology, and mechanical properties. Adv. Mater. 23(1):106–111, 2011.

    Article  PubMed  CAS  Google Scholar 

  3. Arruda, E. M., and M. C. Boyce. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2):389–412, 1993.

    Article  CAS  Google Scholar 

  4. Ault, H. K., and A. H. Hoffman. A composite micromechanical model for connective tissues: part I—theory. J. Biomech. Eng. 114(1):137–141, 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Ault, H. K., and A. H. Hoffman. A composite micromechanical model for connective tissues: part II—application to rat tail tendon and joint capsule. J. Biomech. Eng. 114(1):142–146, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Barber, C. B., D. P. Dobkin, and H. T. Huhdanpaa. The quickhill algorithm for convex hulls. ACM Trans. Math. Softw. 22(4):469–483, 1996.

    Article  Google Scholar 

  7. Benkherourou, M., et al. Standardization of a method for characterizing low-concentration biogels: elastic properties of low-concentration agarose gels. J. Biomech. Eng. 121(2):184–187, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Billiar, K. L., and M. S. Sacks. A method to quantify the fiber kinematics of planar tissues under biaxial stretch. J. Biomech. 30(7):753–756, 1997.

    Article  PubMed  CAS  Google Scholar 

  9. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: part II—a structural constitutive model. J. Biomech. Eng. 122(4):327–335, 2000.

    Article  PubMed  CAS  Google Scholar 

  10. Bischoff, J. E., E. M. Arruda, and K. Grosh. A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69:570–579, 2002.

    Article  CAS  Google Scholar 

  11. Chandran, P. L., and V. H. Barocas. Deterministic material-based averaging theory model of collagen gel micromechanics. J. Biomech. Eng. 129(2):137–147, 2007.

    Article  PubMed  Google Scholar 

  12. Cortes, D. H., and D. M. Elliott, Extra-fibrillar matrix mechanics of annulus fibrosus in tension and compression. Biomech. Model. Mechanobiol., 2011. doi:10.1007/s10237-011-0351-x.

  13. D’Amore, A., et al. Characterization of the complete fiber network topology of planar fibrous tissues and scaffolds. Biomaterials 31(20):5345–5354, 2010.

    Article  PubMed  Google Scholar 

  14. Driessen, N. J., C. V. Bouten, and F. P. Baaijens. A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J. Biomech. Eng. 127(3):494–503, 2005.

    Article  PubMed  Google Scholar 

  15. Driessen, N. J., et al. Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J. Biomech. Eng. 125(4):549–557, 2003.

    Article  PubMed  Google Scholar 

  16. Driessen, N. J., et al. A computational model for collagen fibre remodelling in the arterial wall. J. Theor. Biol. 226(1):53–64, 2004.

    Article  PubMed  CAS  Google Scholar 

  17. Driessen, N. J., et al. Modeling the mechanics of tissue-engineered human heart valve leaflets. J. Biomech. 40(2):325–334, 2007.

    Article  PubMed  Google Scholar 

  18. Driessen, N. J., et al. Remodelling of the angular collagen fiber distribution in cardiovascular tissues. Biomech. Model. Mechanobiol. 7(2):93–103, 2008.

    Article  PubMed  Google Scholar 

  19. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6):15–35, 2006.

    Article  PubMed  Google Scholar 

  20. Gilbert, T. W., et al. Fiber kinematics of small intestinal submucosa under biaxial and uniaxial stretch. J. Biomech. Eng. 128(6):890–898, 2006.

    Article  PubMed  Google Scholar 

  21. Guerin, H. A., and D. M. Elliott. Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load. J. Biomech. 39(8):1410–1418, 2006.

    Article  PubMed  Google Scholar 

  22. Guerin, H. L., and D. M. Elliott. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. J. Orthop. Res. 25(4):508–516, 2007.

    Article  PubMed  Google Scholar 

  23. Hepworth, D. G., et al. Affine versus non-affine deformation in soft biological tissues, measured by the reorientation and stretching of collagen fibres through the thickness of compressed porcine skin. J. Biomech. 34(3):341–346, 2001.

    Article  PubMed  CAS  Google Scholar 

  24. Hewitt, J., et al. Regional material properties of the human hip joint capsule ligaments. J. Orthop. Res. 19(3):359–364, 2001.

    Article  PubMed  CAS  Google Scholar 

  25. Holzapfel, G. A. Nonlinear Solid Mechanics: A Contiuum Approach for Engineering. Chichester: John Wiley and Sons, 2000.

    Google Scholar 

  26. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  27. Horowitz, A., I. Sheinman, and Y. Lanir. Nonlinear incompressible finite element for simulating loading of cardiac tissue—part II: three dimensional formulation for thick ventricular wall segments. J. Biomech. Eng. 110(1):62–68, 1988.

    Article  PubMed  CAS  Google Scholar 

  28. Horowitz, A., et al. Structural three-dimensional constitutive law for the passive myocardium. J. Biomech. Eng. 110(3):200–207, 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Horowitz, A., et al. Nonlinear incompressible finite element for simulating loading of cardiac tissue—part I: two dimensional formulation for thin myocardial strips. J. Biomech. Eng. 110(1):57–61, 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Julkunen, P., et al. Comparison of single-phase isotropic elastic and fibril-reinforced poroelastic models for indentation of rabbit articular cartilage. J. Biomech. 42(5):652–656, 2009.

    Article  PubMed  Google Scholar 

  31. Kabla, A., and L. Mahadevan. Nonlinear mechanics of soft fibrous networks. J. R. Soc. Interface 4(12):99–106, 2007.

    Article  PubMed  CAS  Google Scholar 

  32. Kang, J., et al. Response of an actin filament network model under cyclic stretching through a coarse grained Monte Carlo approach. J. Theor. Biol. 274(1):109–119, 2011.

    Article  PubMed  CAS  Google Scholar 

  33. Kiviranta, P., et al. Collagen network primarily controls Poisson’s ratio of bovine articular cartilage in compression. J. Orthop. Res. 24(4):690–699, 2006.

    Article  PubMed  Google Scholar 

  34. Kuhl, E., et al. Remodeling of biological tissue: mechanically induced reorientation of a transversely isotropic chain network. J. Mech. Phys. Solids 53:1552–1573, 2005.

    Article  CAS  Google Scholar 

  35. Lake, S. P. Anisotropic, inhomogeneous and non-linear structure-function of human supraspinatus tendon. Ph.D. Thesis. University of Pennsylvania, Philadelphia, PA, 2009.

  36. Lake, S. P., and V. H. Barocas. Mechanical and structural contribution of non-fibrillar matrix in uniaxial tension: a collagen-agarose co-gel model. Ann. Biomed. Eng. 39(7):1891–1903, 2011.

    Article  PubMed  Google Scholar 

  37. Lake, S. P., E. S. Hald, and V. H. Barocas. Collagen-agarose co-gels as a model for collagen-matrix interaction in soft tissues subjected to indentation. J. Biomed. Mater. Res. A 99(4):507–515, 2011.

    PubMed  Google Scholar 

  38. Lake, S. P., et al. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J. Orthop. Res. 27(12):1596, 2009.

    Article  PubMed  Google Scholar 

  39. Lake, S. P., et al. Evaluation of affine fiber kinematics in human supraspinatus tendon using quantitative projection plot analysis. Biomech. Model. Mechanobiol. 11(1–2):197–205, 2012.

    Article  PubMed  Google Scholar 

  40. Lanir, Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J. Biomech. 12(6):423–436, 1979.

    Article  PubMed  CAS  Google Scholar 

  41. Lynch, H. A., et al. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. J. Biomech. Eng. 125(5):726–731, 2003.

    Article  PubMed  Google Scholar 

  42. Maceri, F., M. Marino, and G. Vairo. A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement. J. Biomech. 43(2):355–363, 2010.

    Article  PubMed  Google Scholar 

  43. Martufi, G., and T. C. Gasser. A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta. J. Biomech. 44(14):2544–2550, 2011.

    Article  PubMed  Google Scholar 

  44. Nachtrab, S., et al. Morphology and linear-elastic moduli of random network solids. Adv. Mater. 23(22–23):2633–2637, 2011.

    Article  PubMed  CAS  Google Scholar 

  45. Nagel, T., and D. J. Kelly. The influence of fiber orientation on the equilibrium properties of neutral and charged biphasic tissues. J. Biomech. Eng. 132(11):114506, 2010.

    Article  PubMed  Google Scholar 

  46. Nagel, T., and D. J. Kelly. Remodelling of collagen fibre transition stretch and angular distribution in soft biological tissues and cell-seeded hydrogels. Biomech. Model. Mechanobiol. 11(3–4):325–339, 2012.

    Article  PubMed  Google Scholar 

  47. O’Connell, G. D., H. L. Guerin, and D. M. Elliott. Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. J. Biomech. Eng. 131(11):111007, 2009.

    Article  PubMed  Google Scholar 

  48. Peng, X. Q., Z. Y. Guo, and B. Moran. An anisotropic hyperelastic constitutive model with fiber-matrix shear interaction for the human annulus fibrosus. J. Appl. Mech. 73:815–824, 2006.

    Article  Google Scholar 

  49. Purohit, P. K., et al. Protein unfolding accounts for the unusual mechanical behavior of fibrin networks. Acta Biomater. 7(6):2374–2383, 2011.

    Article  PubMed  CAS  Google Scholar 

  50. Quapp, K. M., and J. A. Weiss. Material characterization of human medial collateral ligament. J. Biomech. Eng. 120(6):757–763, 1998.

    Article  PubMed  CAS  Google Scholar 

  51. Raghupathy, R., and V. H. Barocas. A closed-form structural model of planar fibrous tissue mechanics. J. Biomech. 42(10):1424–1428, 2009.

    Article  PubMed  Google Scholar 

  52. Reese, S. P., S. A. Maas, and J. A. Weiss. Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson’s ratios. J. Biomech. 43(7):1394–1400, 2010.

    Article  PubMed  Google Scholar 

  53. Ritter, M. C., et al. A zipper network model of the failure mechanics of extracellular matrices. Proc. Natl. Acad. Sci. USA 106(4):1081–1086, 2009.

    Article  PubMed  CAS  Google Scholar 

  54. Sander, E. A., et al. A cellular solid model of the lamina cribrosa: mechanical dependence on morphology. J. Biomech. Eng. 128(6):879–889, 2006.

    Article  PubMed  CAS  Google Scholar 

  55. Sander, E. A., et al. Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc. Natl. Acad. Sci. USA 106(42):17675–17680, 2009.

    Article  PubMed  CAS  Google Scholar 

  56. Stein, A. M., et al. The micromechanics of three-dimensional collagen-I gels. Complexity 16(4):22–28, 2010.

    Article  Google Scholar 

  57. Storm, C., et al. Nonlinear elasticity in biological gels. Nature 435(7039):191–194, 2005.

    Article  PubMed  CAS  Google Scholar 

  58. Stylianopoulos, T., and V. H. Barocas. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J. Biomech. Eng. 129(4):611–618, 2007.

    Article  PubMed  Google Scholar 

  59. Stylianopoulos, T., and V. H. Barocas. Volume-averaging theory for the study of the mechanics of collagen networks. Comput. Methods Appl. Mech. Eng. 196(31–32):2981–2990, 2007.

    Article  Google Scholar 

  60. Susilo, M. E., et al. Development of a three-dimensional unit cell to model the micromechanical response of a collagen-based extracellular matrix. Acta Biomater. 6(4):1471–1486, 2010.

    Article  PubMed  CAS  Google Scholar 

  61. Tang, H., M. J. Buehler, and B. Moran. A constitutive model of soft tissue: from nanoscale collagen to tissue continuum. Ann. Biomed. Eng. 37(6):1117–1130, 2009.

    Article  PubMed  Google Scholar 

  62. Ulrich, T. A., et al. Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices. Biomaterials 31(7):1875–1884, 2010.

    Article  PubMed  CAS  Google Scholar 

  63. Wagner, D. R., and J. C. Lotz. Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus. J. Orthop. Res. 22(4):901–909, 2004.

    Article  PubMed  Google Scholar 

  64. Wagner, H. P., and J. D. Humphrey. Differential passive and active biaxial mechanical behaviors of muscular and elastic arteries: basilar versus common carotid. J. Biomech. Eng. 133(5):051009, 2011.

    Article  PubMed  CAS  Google Scholar 

  65. Wellen, J., et al. Application of porous-media theory to the investigation of water ADC changes in rabbit Achilles tendon caused by tensile loading. J. Magn. Reson. 170(1):49–55, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Institutes of Health (R01-EB005813 and F32-EB012352), the National Science Foundation (GRFP), and the American Heart Association (11PRE5410003).

Conflict of Interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor H. Barocas.

Additional information

Associate Editor Laura Suggs oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lake, S.P., Hadi, M.F., Lai, V.K. et al. Mechanics of a Fiber Network Within a Non-Fibrillar Matrix: Model and Comparison with Collagen-Agarose Co-gels. Ann Biomed Eng 40, 2111–2121 (2012). https://doi.org/10.1007/s10439-012-0584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0584-6

Keywords

Navigation