Skip to main content
Log in

Some Effects of Fiber Dispersion on the Mechanical Response of Incompressible Soft Solids

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Many soft tissue materials consist of an isotropic ground matrix which is reinforced by fibers that are dispersed about a mean orientation. In this work, we attempt to examine how fiber dispersion affects the mechanical response of a base Neo-Hookean material subjected to a few simple deformations. We find that the composite which consists of a highly dispersed fiber assembly exhibits large resistance to compressive loads along the mean fiber direction. It is an established fact that for a unidirectionally reinforced base material, fiber compression leads to material instability and loss of ellipticity of governing equations primarily due to fiber kinking. We observe that reinforcement by means of dispersed fibers improves material stability against kinking in planar deformations. We present results for two particular fiber strain energy densities, namely, the standard reinforcing model and the exponential model and employ the rotationally symmetric von-Mises distribution function to incorporate fiber dispersion. It is expected that the results qualitatively depict the general response of a Neo-Hookean solid that is reinforced by fibers with a convex strain energy function and which are dispersed with rotational symmetry about a preferred direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Holzapfel, G.A., Ogden, R.W., Sherifova, S.: On fibre dispersion modelling of soft biological tissues: a review. Proc. R. Soc. A, Math. Phys. Eng. Sci. 475(2224), 20180736 (2019). https://doi.org/10.1098/rspa.2018.0736

    Article  MathSciNet  MATH  Google Scholar 

  2. Mollenhauer, J., Aurich, M., Muehleman, C., Khelashvilli, G., Irving, T.C.: X-ray diffraction of the molecular substructure of human articular cartilage. Connect. Tissue Res. 44(5), 201–207 (2003). https://doi.org/10.1080/03008200390244005. PMID: 14660090

    Article  Google Scholar 

  3. Ateshian, G.A.: Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers. J. Biomech. Eng. 129(2), 240–249 (2007). https://doi.org/10.1115/1.2486179

    Article  Google Scholar 

  4. Federico, S., Gasser, T.C.: Nonlinear elasticity of biological tissues with statistical fibre orientation. J. R. Soc. Interface 7(47), 955–966 (2010). https://doi.org/10.1098/rsif.2009.0502

    Article  Google Scholar 

  5. Mackintosh, F.C., Kas, J., Janmey, P.A.: Elasticity of semi-flexible biopolymer networks. Phys. Rev. Lett. 75(24), 4425 (1995). https://doi.org/10.1103/PhysRevLett.75.4425

    Article  Google Scholar 

  6. Janmey, P.A., McCormick, M.E., Rammensee, S., Leight, J.L., Georges, P.C., MacKintosh, F.C.: Negative normal stress in semiflexible biopolymer gels. Nat. Mater. 6(1), 48–51 (2007). https://doi.org/10.1038/nmat1810

    Article  Google Scholar 

  7. Holzapfel, G.A., Unterberger, M.J., Ogden, R.W.: An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins. J. Mech. Behav. Biomed. Mater. 38, 78–90 (2014). https://doi.org/10.1016/j.jmbbm.2014.05.014

    Article  Google Scholar 

  8. Steinwachs, J., Metzner, C., Skodzek, K., Lang, N., Thievessen, I., Mark, C., Münster, S., Aifantis, K.E., Fabry, B.: Three-dimensional force microscopy of cells in biopolymer networks. Nat. Methods 13(2), 171–176 (2016). https://doi.org/10.1038/nmeth.3685

    Article  Google Scholar 

  9. Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16(1), 1–12 (1983). https://doi.org/10.1016/0021-9290(83)90041-6

    Article  Google Scholar 

  10. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006). https://doi.org/10.1098/rsif.2005.0073

    Article  Google Scholar 

  11. Driessen, N.J.B., Bouten, C.V.C., Baaijens, F.P.T.: A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J. Biomech. Eng. 127(3), 494–503 (2005). https://doi.org/10.1115/1.1894373

    Article  Google Scholar 

  12. Alastrué, V., Martínez, M.A., Doblaré, M., Menzel, A.: Anisotropic micro-sphere-based finite elasticity applied to blood vessel modelling. J. Mech. Phys. Solids 57(1), 178–203 (2009). https://doi.org/10.1016/j.jmps.2008.09.005

    Article  MATH  Google Scholar 

  13. Ateshian, G.A., Rajan, V., Chahine, N.O., Canal, C.E., Hung, C.T.: Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J. Biomech. Eng. 131(6), 1–10 (2009). https://doi.org/10.1115/1.3118773

    Article  Google Scholar 

  14. Gasser, T.C., Gallinetti, S., Xing, X., Forsell, C., Swedenborg, J., Roy, J.: Spatial orientation of collagen fibers in the abdominal aortic aneurysm’s wall and its relation to wall mechanics. Acta Biomater. 8(8), 3091–3103 (2012). https://doi.org/10.1016/j.actbio.2012.04.044

    Article  Google Scholar 

  15. Li, K., Ogden, R.W., Holzapfel, G.A.: Computational method for excluding fibers under compression in modeling soft fibrous solids. Eur. J. Mech. A, Solids 57, 178–193 (2016). https://doi.org/10.1016/j.euromechsol.2015.11.003

    Article  MathSciNet  MATH  Google Scholar 

  16. Holzapfel, G.A., Ogden, R.W.: Comparison of two model frameworks for fiber dispersion in the elasticity of soft biological tissues. Eur. J. Mech. A, Solids 66, 193–200 (2017). https://doi.org/10.1016/j.euromechsol.2017.07.005

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, K., Holzapfel, G.A.: Multiscale modeling of fiber recruitment and damage with a discrete fiber dispersion method. J. Mech. Phys. Solids 126, 226–244 (2019). https://doi.org/10.1016/j.jmps.2019.01.022

    Article  MathSciNet  MATH  Google Scholar 

  18. Topol, H., Demirkoparan, H., Pence, T.J., Wineman, A.: Uniaxial load analysis under stretch-dependent fiber remodeling applicable to collagenous tissue. J. Eng. Math. 95(1), 325–345 (2015). https://doi.org/10.1007/s10665-014-9771-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Topol, H., Demirkoparan, H., Pence, T.J., Wineman, A.: Time-evolving collagen-like structural fibers in soft tissues: biaxial loading and spherical inflation. Mech. Time-Depend. Mater. 21(1), 1–29 (2017). https://doi.org/10.1007/s11043-016-9315-y

    Article  Google Scholar 

  20. Stender, C.J., Rust, E., Martin, P.T., Neumann, E.E., Brown, R.J., Lujan, T.J.: Modeling the effect of collagen fibril alignment on ligament mechanical behavior. Biomech. Model. Mechanobiol. 17(2), 543–557 (2018). https://doi.org/10.1007/s10237-017-0977-4

    Article  Google Scholar 

  21. Raghupathy, R., Barocas, V.H.: A closed-form structural model of planar fibrous tissue mechanics. J. Biomech. 42(10), 1424–1428 (2009). https://doi.org/10.1016/j.jbiomech.2009.04.005

    Article  Google Scholar 

  22. Bažant, Z.P., Oh, B.H.: Efficient numerical integration on the surface of a sphere. Z. Angew. Math. Mech. 66(1), 37–49 (1986). https://doi.org/10.1002/zamm.19860660108

    Article  MathSciNet  MATH  Google Scholar 

  23. Fliege, J., Maier, U.: The distribution of points on the sphere and corresponding cubature formulae. IMA J. Numer. Anal. 19(2), 317–334 (1999). https://doi.org/10.1093/imanum/19.2.317

    Article  MathSciNet  MATH  Google Scholar 

  24. Itskov, M.: On the accuracy of numerical integration over the unit sphere applied to full network models. Comput. Mech. 57(5), 859–865 (2016). https://doi.org/10.1007/s00466-016-1265-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Volokh, K.Y.: On arterial fiber dispersion and auxetic effect. J. Biomech. 61, 123–130 (2017). https://doi.org/10.1016/j.jbiomech.2017.07.010

    Article  Google Scholar 

  26. Li, K., Ogden, R.W., Holzapfel, G.A.: A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues. J. R. Soc. Interface 15(138), 20170766 (2018). https://doi.org/10.1098/rsif.2017.0766

    Article  Google Scholar 

  27. Pandolfi, A., Holzapfel, G.A.: Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J. Biomech. Eng. 130(6), 061006 (2008). https://doi.org/10.1115/1.2982251

    Article  Google Scholar 

  28. Wang, S., Hatami-Marbini, H.: Constitutive modeling of corneal tissue: influence of three-dimensional collagen fiber microstructure. J. Biomech. Eng. 143(3), 1–9 (2021). https://doi.org/10.1115/1.4048401

    Article  Google Scholar 

  29. Melnik, A.V., Borja Da Rocha, H., Goriely, A.: On the modeling of fiber dispersion in fiber-reinforced elastic materials. Int. J. Non-Linear Mech. 75, 92–106 (2015). https://doi.org/10.1016/j.ijnonlinmec.2014.10.006

    Article  Google Scholar 

  30. Melnik, A.V., Luo, X., Ogden, R.W.: A generalised structure tensor model for the mixed invariant \(I_{8}\). Int. J. Non-Linear Mech. 107, 137–148 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.08.018

    Article  Google Scholar 

  31. Holzapfel, G.A., Ogden, R.W.: On the tension-compression switch in soft fibrous solids. Eur. J. Mech. A, Solids 49, 561–569 (2015). https://doi.org/10.1016/j.euromechsol.2014.09.005

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, K., Ogden, R.W., Holzapfel, G.A.: Modeling fibrous biological tissues with a general invariant that excludes compressed fibers. J. Mech. Phys. Solids 110, 38–53 (2018). https://doi.org/10.1016/j.jmps.2017.09.005

    Article  MathSciNet  Google Scholar 

  33. Latorre, M., Montáns, F.J.: On the tension-compression switch of the Gasser–Ogden–Holzapfel model: analysis and a new pre-integrated proposal. J. Mech. Behav. Biomed. Mater. 57, 175–189 (2016). https://doi.org/10.1016/j.jmbbm.2015.11.018

    Article  Google Scholar 

  34. Holzapfel, G.A., Ogden, R.W.: On fiber dispersion models: exclusion of compressed fibers and spurious model comparisons. J. Elast. 129, 49–68 (2017). https://doi.org/10.1007/s10659-016-9605-2

    Article  MathSciNet  MATH  Google Scholar 

  35. Polignone, D.A., Horgan, C.O.: Cavitation for incompressible anisotropic nonlinearly elastic spheres. J. Elast. 33, 27–65 (1993). https://doi.org/10.1007/BF00042634

    Article  MATH  Google Scholar 

  36. Qiu, G.Y., Pence, T.J.: Remarks on the behavior of simple directionally reinforced incompressible nonlinearly elastic solids. J. Elast. 49(1), 1–30 (1997). https://doi.org/10.1023/A:1007410321319

    Article  MathSciNet  MATH  Google Scholar 

  37. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61(1–3), 1–48 (2000). https://doi.org/10.1023/A:1010835316564

    Article  MathSciNet  MATH  Google Scholar 

  38. Qiu, G.Y., Pence, T.J.: Loss of ellipticity in plane deformation of a simple directionally reinforced incompressible nonlinearly elastic solid. J. Elast. 49(1), 31–63 (1997). https://doi.org/10.1023/A:1007441804480

    Article  MathSciNet  MATH  Google Scholar 

  39. Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: I. Mechanical equilibrium. J. Elast. 62(2), 119–144 (2001). https://doi.org/10.1023/A:1011625509754

    Article  MathSciNet  MATH  Google Scholar 

  40. Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: II. Kink band stability and maximally dissipative band broadening. J. Elast. 62(2), 145–170 (2001). https://doi.org/10.1023/A:1011693326593

    Article  MathSciNet  MATH  Google Scholar 

  41. Merodio, J., Ogden, R.W.: Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation. Arch. Mech. 54, 525–552 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 40(2–3), 213–227 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.05.003

    Article  MATH  Google Scholar 

  43. Merodio, J., Ogden, R.W.: On tensile instabilities and ellipticity loss in fiber-reinforced incompressible non-linearly elastic solids. Mech. Res. Commun. 32(3), 290–299 (2005). https://doi.org/10.1016/j.mechrescom.2004.06.008

    Article  MathSciNet  MATH  Google Scholar 

  44. Abeyaratne, R.C.: Discontinuous deformation gradients in plane finite elastostatics of incompressible materials. J. Elast. 10(3), 255–293 (1980). https://doi.org/10.1007/BF00127451

    Article  MathSciNet  MATH  Google Scholar 

  45. Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997)

    Google Scholar 

  46. Holzapfel, G.A., Niestrawska, J.A., Ogden, R.W., Reinisch, A.J., Schriefl, A.J.: Modelling non-symmetric collagen fibre dispersion in arterial walls. J. R. Soc. Interface (2015). https://doi.org/10.1098/rsif.2015.0188

    Article  Google Scholar 

  47. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of arteries. Proc. R. Soc. A, Math. Phys. Eng. Sci. 466(2118), 1551–1597 (2010). https://doi.org/10.1098/rspa.2010.0058

    Article  MathSciNet  MATH  Google Scholar 

  48. Weisstein, E.W.: Erfi. MathWorld–A Wolfram Web Resource (2022). Available at https://reference.wolfram.com/language/ref/Erfi.html

  49. Pandolfi, A., Vasta, M.: Fiber distributed hyperelastic modeling of biological tissues. Mech. Mater. 44, 151–162 (2012). https://doi.org/10.1016/j.mechmat.2011.06.004

    Article  Google Scholar 

  50. Guo, Z.Y., Peng, X.Q., Moran, B.: Mechanical response of neo-Hookean fiber reinforced incompressible nonlinearly elastic solids. Int. J. Solids Struct. 44(6), 1949–1969 (2007). https://doi.org/10.1016/j.ijsolstr.2006.08.018

    Article  MATH  Google Scholar 

  51. Horgan, C.O., Murphy, J.G.: On the tension-compression switch hypothesis in arterial mechanics. J. Mech. Behav. Biomed. Mater. 103(vember), 2019 (2020). https://doi.org/10.1016/j.jmbbm.2019.103558

    Article  Google Scholar 

  52. Böl, M., Ehret, A.E., Leichsenring, K., Weichert, C., Kruse, R.: On the anisotropy of skeletal muscle tissue under compression. Acta Biomater. 10(7), 3225–3234 (2014). https://doi.org/10.1016/j.actbio.2014.03.003

    Article  Google Scholar 

  53. Bellini, C., Ferruzzi, J., Roccabianca, S., Di Martino, E.S., Humphrey, J.D.: A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann. Biomed. Eng. 42(3), 488–502 (2014). https://doi.org/10.1007/s10439-013-0928-x

    Article  Google Scholar 

  54. Horgan, C.O., Murphy, J.G.: On the fiber stretch in shearing deformations of fibrous soft materials. J. Elast. 133(2), 253–259 (2018). https://doi.org/10.1007/s10659-018-9678-1

    Article  MathSciNet  MATH  Google Scholar 

  55. Horgan, C.O., Murphy, J.G.: Fiber orientation effects in simple shearing of fibrous soft tissues. J. Biomech. 64, 131–135 (2017). https://doi.org/10.1016/j.jbiomech.2017.09.018

    Article  Google Scholar 

  56. Horgan, C.O., Murphy, J.G.: Simple shearing of incompressible and slightly compressible isotropic nonlinearly elastic materials. J. Elast. 98(2), 205–221 (2010). https://doi.org/10.1007/s10659-009-9225-1

    Article  MathSciNet  MATH  Google Scholar 

  57. Holzapfel, G.A., Ogden, R.W.: Elasticity of biopolymer filaments. Acta Biomater. 9(7), 7320–7325 (2013). https://doi.org/10.1016/j.actbio.2013.03.001

    Article  Google Scholar 

  58. Kang, H., Wen, Q., Janmey, P.A., Tang, J.X., Conti, E., MacKintosh, F.C.: Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels. J. Phys. Chem. B 113(12), 3799–3805 (2009). https://doi.org/10.1021/jp807749f

    Article  Google Scholar 

  59. Spencer, A.J.M.: Constitutive Theory for Strongly Anisotropic Solids. Springer-Verlag, Vienna (1984)

    Book  Google Scholar 

  60. Horgan, C.O., Murphy, J.G.: On the normal stresses in simple shearing of fiber-reinforced nonlinearly elastic materials. J. Elast. 104(1–2), 343–355 (2011). https://doi.org/10.1007/s10659-011-9310-0

    Article  MathSciNet  MATH  Google Scholar 

  61. Horgan, C.O., Murphy, J.G.: Poynting and reverse Poynting effects in soft materials. Soft Matter 13(28), 4916–4923 (2017). https://doi.org/10.1039/c7sm00992e

    Article  Google Scholar 

  62. Destrade, M., Horgan, C.O., Murphy, J.G.: Dominant negative Poynting effect in simple shearing of soft tissues. J. Eng. Math. 95(1), 87–98 (2015). https://doi.org/10.1007/s10665-014-9706-5

    Article  MathSciNet  MATH  Google Scholar 

  63. Holzapfel, G.A., Ogden, R.W.: On the bending and stretching elasticity of biopolymer filaments. J. Elast. 104(1–2), 319–342 (2011). https://doi.org/10.1007/s10659-010-9277-2

    Article  MathSciNet  MATH  Google Scholar 

  64. Szarek, P., Lilledahl, M.B., Emery, N.C., Lewis, C.G., Pierce, D.M.: The zonal evolution of collagen-network morphology quantified in early osteoarthritic grades of human cartilage. Osteoarthr. Cartil. Open 2(4), 100086 (2020). https://doi.org/10.1016/j.ocarto.2020.100086

    Article  Google Scholar 

  65. Jadidi, M., Sherifova, S., Sommer, G., Kamenskiy, A., Holzapfel, G.A.: Constitutive modeling using structural information on collagen fiber direction and dispersion in human superficial femoral artery specimens of different ages. Acta Biomater. 121, 461–474 (2021). https://doi.org/10.1016/j.actbio.2020.11.046

    Article  Google Scholar 

  66. Beussman, K.M., Mollica, M.Y., Leonard, A., Miles, J., Hocter, J., Song, Z., Stolla, M., Han, S.J., Emery, A., Thomas, W.E., Sniadecki, N.J.: Black dots: high-yield traction force microscopy reveals structural factors contributing to platelet forces. Acta Biomater. (2021). https://doi.org/10.1016/j.actbio.2021.11.013

    Article  Google Scholar 

  67. Song, D., Hugenberg, N., Oberai, A.A.: Three-dimensional traction microscopy with a fiber-based constitutive model. Comput. Methods Appl. Mech. Eng. 357, 112579 (2019). https://doi.org/10.1016/j.cma.2019.112579

    Article  MathSciNet  MATH  Google Scholar 

  68. Park, D., Wershof, E., Boeing, S., Labernadie, A., Jenkins, R.P., George, S., Trepat, X., Bates, P.A., Sahai, E.: Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions. Nat. Mater. 19(2), 227–238 (2020). https://doi.org/10.1038/s41563-019-0504-3

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Prof. Biswanath Banerjee for helpful discussions on nonlinear elasticity, and Prof. Arghya Deb for insightful discussions and for help in revising an earlier version of this article. Thanks are due to the anonymous reviewers for their constructive comments that have helped in improving this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashwati Sen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S. Some Effects of Fiber Dispersion on the Mechanical Response of Incompressible Soft Solids. J Elast 150, 119–149 (2022). https://doi.org/10.1007/s10659-022-09901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-022-09901-8

Keywords

Mathematics Subject Classification

Navigation