Skip to main content

Advertisement

Log in

Fluorescence Lifetime Techniques in Medical Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This article presents an overview of time-resolved (lifetime) fluorescence techniques used in biomedical diagnostics. In particular, we review the development of time-resolved fluorescence spectroscopy (TRFS) and fluorescence lifetime imaging (FLIM) instrumentation and associated methodologies which allow in vivo characterization and diagnosis of biological tissues. Emphasis is placed on the translational research potential of these techniques and on evaluating whether intrinsic fluorescence signals provide useful contrast for the diagnosis of human diseases including cancer (gastrointestinal tract, lung, head and neck, and brain), skin and eye diseases, and atherosclerotic cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Andersson-Engels, S., C. Klinteberg, K. Svanberg, and S. Svanberg. In vivo fluorescence imaging for tissue diagnostics. Phys. Med. Biol. 42:815–824, 1997.

    PubMed  CAS  Google Scholar 

  2. Angheloiu, G. O., J. T. Arendt, M. G. Muller, A. S. Haka, I. Georgakoudi, J. T. Motz, O. R. Scepanovic, B. D. Kuban, J. Myles, F. Miller, E. A. Podrez, M. Fitzmaurice, J. R. Kramer, and M. S. Feld. Intrinsic fluorescence and diffuse reflectance spectroscopy identify superficial foam cells in coronary plaques prone to erosion. Arterioscler. Thromb. Vasc. Biol. 26:1594–1600, 2006.

    PubMed  CAS  Google Scholar 

  3. Arakawa, K., K. Isoda, T. Ito, K. Nakajima, T. Shibuya, and F. Ohsuzu. Fluorescence analysis of biochemical constituents identifies atherosclerotic plaque with a thin fibrous cap. Arterioscler. Thromb. Vasc. Biol. 22:1002–1007, 2002.

    PubMed  CAS  Google Scholar 

  4. Arens, C., D. Reussner, H. Neubacher, J. Woenckhaus, and H. Glanz. Spectrometric measurement in laryngeal cancer. Eur. Arch. Otorhinolaryngol. 263:1001–1007, 2006.

    PubMed  CAS  Google Scholar 

  5. Ashjian, P., A. Elbarbary, P. Zuk, D. A. DeUgarte, P. Benhaim, L. Marcu, and M. H. Hedrick. Noninvasive in situ evaluation of osteogenic differentiation by time-resolved laser-induced fluorescence spectroscopy. Tissue Eng. 10:411–420, 2004.

    PubMed  CAS  Google Scholar 

  6. Baraga, J. J., R. P. Rava, P. Taroni, C. Kittrell, M. Fitzmaurice, and M. S. Feld. Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306–310 nm excitation. Lasers Surg. Med. 10:245–261, 1990.

    PubMed  CAS  Google Scholar 

  7. Bartorelli, A. L., M. B. Leon, Y. Almagor, L. G. Prevosti, J. A. Swain, C. L. McIntosh, R. F. Neville, M. D. House, and R. F. Bonner. In vivo human atherosclerotic plaque recognition by laser-excited fluorescence spectroscopy. J. Am. Coll. Cardiol. 17:160B–168B, 1991.

    PubMed  CAS  Google Scholar 

  8. Berezin, M. Y., and S. Achilefu. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110:2641–2684, 2010.

    PubMed  CAS  Google Scholar 

  9. Bigio, I. J., and J. R. Mourant. Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Phys. Med. Biol. 42:803–814, 1997.

    PubMed  CAS  Google Scholar 

  10. Blackwell, J., K. M. Katika, L. Pilon, K. M. Dipple, S. R. Levin, and A. Nouvong. In vivo time-resolved autofluorescence measurements to test for glycation of human skin. J. Biomed. Opt. 13:014004, 2008.

    PubMed  Google Scholar 

  11. Brancaleon, L., A. J. Durkin, J. H. Tu, G. Menaker, J. D. Fallon, and N. Kollias. In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem. Photobiol. 73:178–183, 2001.

    PubMed  CAS  Google Scholar 

  12. Butte, P. V., Q. Fang, J. A. Jo, W. H. Yong, B. K. Pikul, K. L. Black, and L. Marcu. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy. J. Biomed. Opt. 15:027008, 2010.

    PubMed  Google Scholar 

  13. Butte, P. V., A. N. Mamelak, M. Nuno, S. I. Bannykh, K. L. Black, and L. Marcu. Fluorescence lifetime spectroscopy for guided therapy of brain tumors. Neuroimage 54(Suppl 1):S125–S135, 2011.

    PubMed  Google Scholar 

  14. Cardenas-Turanzas, M., J. A. Freeberg, J. L. Benedet, E. N. Atkinson, D. D. Cox, R. Richards-Kortum, C. MacAulay, M. Follen, and S. B. Cantor. The clinical effectiveness of optical spectroscopy for the in vivo diagnosis of cervical intraepithelial neoplasia: where are we? Gynecol. Oncol. 107:S138–S146, 2007.

    PubMed  Google Scholar 

  15. Chaturvedi, P., S. K. Majumder, H. Krishna, S. Muttagi, and P. K. Gupta. Fluorescence spectroscopy for noninvasive early diagnosis of oral mucosal malignant and potentially malignant lesions. J. Cancer Res. Ther. 6:497–502, 2010.

    PubMed  Google Scholar 

  16. Chen, H. M., C. P. Chiang, C. You, T. C. Hsiao, and C. Y. Wang. Time-resolved autofluorescence spectroscopy for classifying normal and premalignant oral tissues. Lasers Surg. Med. 37:37–45, 2005.

    PubMed  Google Scholar 

  17. Chorvat, D., and A. Chorvatova. Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues. Lasers Phys. Lett. 6:175–193, 2009.

    CAS  Google Scholar 

  18. Christov, A., E. Dai, M. Drangova, L. Liu, G. S. Abela, P. Nash, G. McFadden, and A. Lucas. Optical detection of triggered atherosclerotic plaque disruption by fluorescence emission analysis. Photochem. Photobiol. 72:242–252, 2000.

    PubMed  CAS  Google Scholar 

  19. Croce, A. C., S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli. Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins. Photochem. Photobiol. 77:309–318, 2003.

    PubMed  CAS  Google Scholar 

  20. Cubeddu, R., D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini. Time-resolved fluorescence imaging in biology and medicine. J. Phys. D: Appl. Phys 35:R61–R76, 2002.

    CAS  Google Scholar 

  21. Curvers, W. L., R. Singh, L. M. Song, H. C. Wolfsen, K. Ragunath, K. Wang, M. B. Wallace, P. Fockens, and J. J. Bergman. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett’s oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut 57:167–172, 2008.

    PubMed  CAS  Google Scholar 

  22. Das, B. B., F. Liu, and R. R. Alfano. Time-resolved fluorescence and photon migration studies in biomedical and model random media. Rep. Prog. Phys. 60:227–292, 1997.

    Google Scholar 

  23. De Beule, P. A. A., C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. W. French. A hyperspectral fluorescence lifetime probe for skin cancer diagnosis. Rev. Sci. Instrum. 78:123101, 2007.

    PubMed  Google Scholar 

  24. Delank, W., B. Khanavkar, J. A. Nakhosteen, and W. Stoll. A pilot study of autofluorescent endoscopy for the in vivo detection of laryngeal cancer. Laryngoscope 110:368–373, 2000.

    PubMed  CAS  Google Scholar 

  25. Dimitrow, E., I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. Konig, and M. Kaatz. Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis. Exp. Dermatol. 18:509–515, 2009.

    PubMed  Google Scholar 

  26. Dimitrow, E., M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, and M. Kaatz. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J. Invest. Dermatol. 129:1752–1758, 2009.

    PubMed  CAS  Google Scholar 

  27. Dognitz, N., D. Salomon, M. Zellweger, J. P. Ballini, T. Gabrecht, N. Lange, H. van den Bergh, and G. Wagnieres. Comparison of ALA- and ALA hexyl-ester-induced PpIX depth distribution in human skin carcinoma. J. Photochem. Photobiol. B 93:140–148, 2008.

    PubMed  Google Scholar 

  28. Elson, D., N. Galletly, C. Talbot, J. Requejo-Isidro, J. McGinty, C. Dunsby, P. Lanigan, I. Munro, R. Benninger, P. de Beule, E. Auksorius, L. Hegyi, A. Sandison, A. Wallace, P. Soutter, M. Neil, J. Lever, G. Stamp, and P. French. Multidimensional Fluorescence Imaging applied to biological tissues. In: Reviews in Fluorescence, edited by C. Geddes, and J. R. Lakowicz. New York: Springer, 2006, pp. 477–524.

    Google Scholar 

  29. Elson, D. S., J. A. Jo, and L. Marcu. Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens. New. J. Phys. 9:127, 2007.

    PubMed  Google Scholar 

  30. Fang, Q., T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu. Time-domain laser-induced fluorescence apparatus for clinical diagnostics. Rev. Sci. Instrum. 75:151–162, 2004.

    CAS  Google Scholar 

  31. Fawzy, Y., and H. Zeng. Intrinsic fluorescence spectroscopy for endoscopic detection and localization of the endobronchial cancerous lesions. J. Biomed. Opt. 13:064022, 2008.

    PubMed  Google Scholar 

  32. Fite, B. Z., M. Decaris, Y. Sun, Y. Sun, A. Lam, C. K. Ho, J. K. Leach, and L. Marcu. Noninvasive multimodal evaluation of bioengineered cartilage constructs combining time-resolved fluorescence and ultrasound imaging. Tissue Eng. C: Methods 17:495–504, 2011.

    CAS  Google Scholar 

  33. Freeberg, J. A., D. M. Serachitopol, N. McKinnon, R. Price, E. N. Atkinson, D. D. Cox, C. MacAulay, R. Richards-Kortum, M. Follen, and B. Pikkula. Fluorescence and reflectance device variability throughout the progression of a phase II clinical trial to detect and screen for cervical neoplasia using a fiber optic probe. J. Biomed. Opt. 12:034015, 2007.

    PubMed  Google Scholar 

  34. Gabrecht, T., T. Glanzmann, L. Freitag, B. C. Weber, H. van den Bergh, and G. Wagnieres. Optimized autofluorescence bronchoscopy using additional backscattered red light. J. Biomed. Opt. 12:064016, 2007.

    PubMed  Google Scholar 

  35. Gabrecht, T., B. Lovisa, F. Borle, and G. Wagnieres. Design of an endoscopic optical reference to be used for autofluorescence bronchoscopy with a commercially available diagnostic autofluorescence endoscopy (DAFE) system. Phys. Med. Biol. 52:N163–N171, 2007.

    PubMed  CAS  Google Scholar 

  36. Gabrecht, T., A. Radu, P. Grosjean, B. Weber, G. Reichle, L. Freitag, P. Monnier, H. van den Bergh, and G. Wagnieres. Improvement of the specificity of cancer detection by autofluorescence imaging in the tracheo-bronchial tree using backscattered violet light. Photodiagn. Photodyn. Ther. 5:2–9, 2008.

    Google Scholar 

  37. Georgakoudi, I., W. L. Rice, M. Hronik-Tupaj, and D. L. Kaplan. Optical spectroscopy and imaging for the noninvasive evaluation of engineered tissues. Tissue Eng. B Rev. 14:321–340, 2008.

    Google Scholar 

  38. Gilbert, S., J. D. Luketich, and N. A. Christie. Fluorescent bronchoscopy. Thorac. Surg. Clin. 14:71–77, viii, 2004.

    Google Scholar 

  39. Glanzmann, T., J. P. Ballini, H. van den Bergh, and G. Wagnières. Time-resolved spectrofluorometer for clinical tissue characterization during endoscopy. Rev. Sci. Instrum. 70:4067–4077, 2009.

    Google Scholar 

  40. Goujon, D., M. Zellweger, A. Radu, P. Grosjean, B. C. Weber, H. van den Bergh, P. Monnier, and G. Wagnieres. In vivo autofluorescence imaging of early cancers in the human tracheobronchial tree with a spectrally optimized system. J. Biomed. Opt. 8:17–25, 2003.

    PubMed  Google Scholar 

  41. Haj-Hosseini, N., J. Richter, S. Andersson-Engels, and K. Wardell. Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid. Lasers Surg. Med. 42:9–14, 2010.

    PubMed  Google Scholar 

  42. Hammer, M., E. Konigsdorffer, C. Liebermann, C. Framme, G. Schuch, D. Schweitzer, and J. Strobel. Ocular fundus auto-fluorescence observations at different wavelengths in patients with age-related macular degeneration and diabetic retinopathy. Graefes. Arch. Clin. Exp. Ophthalmol. 246:105–114, 2008.

    PubMed  Google Scholar 

  43. Hanibuchi, M., S. Yano, Y. Nishioka, T. Miyoshi, K. Kondo, H. Uehara, and S. Sone. Autofluorescence bronchoscopy, a novel modality for the early detection of bronchial premalignant and malignant lesions. J. Med. Invest. 54:261–266, 2007.

    PubMed  Google Scholar 

  44. Hegyi, J., V. Hegyi, T. Ruzicka, P. Arenberger, and C. Berking. New developments in fluorescence diagnostics. J. Dtsch. Dermatol. Ges. 9:368–372, 2011.

    PubMed  Google Scholar 

  45. Heintzelman, D. L., U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum. Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy. Photochem. Photobiol. 72:103–113, 2000.

    PubMed  CAS  Google Scholar 

  46. Herth, F. J., A. Ernst, and H. D. Becker. Autofluorescence bronchoscopy—a comparison of two systems (LIFE and D-Light). Respiration 70:395–398, 2003.

    PubMed  CAS  Google Scholar 

  47. Honda, Y., and P. J. Fitzgerald. Frontiers in intravascular imaging technologies. Circulation 117:2024–2037, 2008.

    PubMed  Google Scholar 

  48. Huh, W. K., R. M. Cestero, F. A. Garcia, M. A. Gold, R. S. Guido, K. McIntyre-Seltman, D. M. Harper, L. Burke, S. T. Sum, R. F. Flewelling, and R. D. Alvarez. Optical detection of high-grade cervical intraepithelial neoplasia in vivo: results of a 604-patient study. Am. J. Obstet. Gynecol. 190:1249–1257, 2004.

    PubMed  Google Scholar 

  49. Huttenberger, D., T. Gabrecht, G. Wagnieres, B. Weber, A. Linder, H. J. Foth, and L. Freitag. Autofluorescence detection of tumors in the human lung–spectroscopical measurements in situ, in an in vivo model and in vitro. Photodiagn. Photodyn. Ther. 5:139–147, 2008.

    CAS  Google Scholar 

  50. Jo, J. A., Q. Fang, T. Papaioannou, J. D. Baker, A. H. Dorafshar, T. Reil, J. H. Qiao, M. C. Fishbein, J. A. Freischlag, and L. Marcu. Laguerre-based method for analysis of time-resolved fluorescence data: application to in vivo characterization and diagnosis of atherosclerotic lesions. J. Biomed. Opt. 11:021004, 2006.

    PubMed  Google Scholar 

  51. Jo, J. A., Q. Fang, T. Papaioannou, and L. Marcu. Fast model-free deconvolution of fluorescence decay for analysis of biological systems. J. Biomed. Opt. 9:743–752, 2004.

    PubMed  CAS  Google Scholar 

  52. Kara, M.-A., F. P. Peters, P. Fockens, F. J. ten Kate, and J. J. Bergman. Endoscopic video-autofluorescence imaging followed by narrow band imaging for detecting early neoplasia in Barrett’s esophagus. Gastrointest. Endosc. 64:176–185, 2006.

    PubMed  Google Scholar 

  53. Keller, M. D., S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen. Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis. Lasers Surg. Med. 42:15–23, 2010.

    PubMed  Google Scholar 

  54. Kobayashi, H., M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110:2620–2640, 2010.

    PubMed  CAS  Google Scholar 

  55. Koehler, M. J., K. Konig, P. Elsner, R. Buckle, and M. Kaatz. In vivo assessment of human skin aging by multiphoton laser scanning tomography. Opt. Lett. 31:2879–2881, 2006.

    PubMed  Google Scholar 

  56. Koetsier, M., E. Nur, H. Chunmao, H. L. Lutgers, T. P. Links, A. J. Smit, G. Rakhorst, and R. Graaff. Skin color independent assessment of aging using skin autofluorescence. Opt. Express 18:14416–14429, 2010.

    PubMed  CAS  Google Scholar 

  57. Kollias, N., G. Zonios, and G. N. Stamatas. Fluorescence spectroscopy of skin. Vib. Spectrosc. 28:17–23, 2002.

    CAS  Google Scholar 

  58. Konig, K. Clinical multiphoton tomography. J. Biophotonics 1:13–23, 2008.

    PubMed  Google Scholar 

  59. Konig, K., A. Ehlers, I. Riemann, S. Schenkl, R. Buckle, and M. Kaatz. Clinical two-photon microendoscopy. Microsc. Res. Tech. 70:398–402, 2007.

    PubMed  CAS  Google Scholar 

  60. Kumar, S., C. Dunsby, P. A. De Beule, D. M. Owen, U. Anand, P. M. Lanigan, R. K. Benninger, D. M. Davis, M. A. Neil, P. Anand, C. Benham, A. Naylor, and P. M. French. Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging. Opt. Express. 15:12548–12561, 2007.

    PubMed  CAS  Google Scholar 

  61. Lakowicz, J. R. Principles of Fluorescence Spectroscopy (3rd ed.). New York: Kluwer/Plenum, 2006.

    Google Scholar 

  62. Lam, S., C. MacAulay, J. C. leRiche, and B. Palcic. Detection and localization of early lung cancer by fluorescence bronchoscopy. Cancer 89:2468–2473, 2000.

    PubMed  CAS  Google Scholar 

  63. Lane, P. M., T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay. Simple device for the direct visualization of oral-cavity tissue fluorescence. J. Biomed. Opt. 11:024006, 2006.

    PubMed  Google Scholar 

  64. Libby, P., and M. Aikawa. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat. Med. 8:1257–1262, 2002.

    PubMed  CAS  Google Scholar 

  65. Lin, W. C., A. Mahadevan-Jansen, M. D. Johnson, R. J. Weil, and S. A. Toms. In vivo optical spectroscopy detects radiation damage in brain tissue. Neurosurgery 57:518–525; discussion 518–525, 2005.

    PubMed  Google Scholar 

  66. Lin, W. C., S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen. In vivo brain tumor demarcation using optical spectroscopy. Photochem. Photobiol. 73:396–402, 2001.

    PubMed  CAS  Google Scholar 

  67. MacNeill, B. D., H. C. Lowe, M. Takano, V. Fuster, and I. K. Jang. Intravascular modalities for detection of vulnerable plaque: current status. Arterioscler. Thromb. Vasc. Biol. 23:1333–1342, 2003.

    PubMed  CAS  Google Scholar 

  68. Marcu, L. Fluorescence lifetime in cardiovascular diagnostics. J. Biomed. Opt. 15:011106, 2010.

    PubMed  Google Scholar 

  69. Marcu, L., M. C. Fishbein, J. M. Maarek, and W. S. Grundfest. Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy. Arterioscler. Thromb. Vasc. Biol. 21:1244–1250, 2001.

    PubMed  CAS  Google Scholar 

  70. Marcu, L., W. S. Grundfest, and M. C. Fishbein. Time-resolved laser-induced fluorescence spectroscopy for staging atherosclerotic lesions. In: Handbook of Biomedical Fluorescence, edited by M.-A. Mycek, and B. W. Pogue. New York: Marcel Dekker, Inc, 2003, pp. 397–429.

    Google Scholar 

  71. Marcu, L., J. A. Jo, and P. Butte. Fluorescence lifetime spectroscopy in cardio and neuroimaging. In: Advances in Optical Imaging for Clinical Medicine, edited by N. Iftimia, W. R. Brugge, and D. X. Hammer. New Jersey: Wiley, 2011.

    Google Scholar 

  72. Marcu, L., J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein. Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy. Atherosclerosis 204:156–164, 2009.

    PubMed  CAS  Google Scholar 

  73. Masters, B., and P. So. Confocal microscopy and multi-photon excitation microscopy of human skin in vivo. Opt. Express 8:2–10, 2001.

    PubMed  CAS  Google Scholar 

  74. Masters, B. R., P. T. So, and E. Gratton. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 72:2405–2412, 1997.

    PubMed  CAS  Google Scholar 

  75. Mayinger, B., P. Horner, M. Jordan, C. Gerlach, T. Horbach, W. Hohenberger, and E. G. Hahn. Light-induced autofluorescence spectroscopy for tissue diagnosis of GI lesions. Gastrointest. Endosc. 52:395–400, 2000.

    PubMed  CAS  Google Scholar 

  76. Mayinger, B., P. Horner, M. Jordan, C. Gerlach, T. Horbach, W. Hohenberger, and E. G. Hahn. Light-induced autofluorescence spectroscopy for the endoscopic detection of esophageal cancer. Gastrointest. Endosc. 54:195–201, 2001.

    PubMed  CAS  Google Scholar 

  77. McGinty, J., N. P. Galletly, C. Dunsby, I. Munro, D. S. Elson, J. Requejo-Isidro, P. Cohen, R. Ahmad, A. Forsyth, A. V. Thillainayagam, M. A. Neil, P. M. French, and G. W. Stamp. Wide-field fluorescence lifetime imaging of cancer. Biomed. Opt. Express 1:627–640, 2010.

    PubMed  Google Scholar 

  78. McGinty, J., N. P. Galletly, C. Dunsby, I. Munro, D. S. Elson, J. Requejo-Isidro, P. Cohen, R. Ahmad, A. Forsyth, A. V. Thillainayagam, M. A. A. Neil, P. M. W. French, and G. W. Stamp. Wide-field fluorescence lifetime imaging of cancer. Biomed. Opt. Expres. 1:627–640, 2010.

    Google Scholar 

  79. Meier, J. D., H. Xie, Y. Sun, Y. Sun, N. Hatami, B. Poirier, L. Marcu, and D. G. Farwell. Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma. Otolaryngol. Head Neck Surg. 142:838–844, 2010.

    PubMed  Google Scholar 

  80. Moreno, P. R., and J. E. Muller. Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods. Curr. Opin. Cardiol. 17:638–647, 2002.

    PubMed  Google Scholar 

  81. Morguet, A. J., B. Korber, B. Abel, H. Hippler, V. Wiegand, and H. Kreuzer. Autofluorescence spectroscopy using a XeCl excimer laser system for simultaneous plaque ablation and fluorescence excitation. Lasers Surg. Med. 14:238–248, 1994.

    PubMed  CAS  Google Scholar 

  82. Muller, M. G., T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, R. R. Dasari, S. M. Shapshay, and M. S. Feld. Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma. Cancer 97:1681–1692, 2003.

    PubMed  Google Scholar 

  83. Mycek, M.-A., K. Vishwanath, K. T. Schomacker, and N. S. Nishioka. Fluorescence spectroscopy for in vivo discrimination of pre-malignant colonic lesions. OSA/BOSD, 2000.

  84. Mycek, M.-A., and B. W. Pogue. Handbook of Biomedical Fluorescence. New York: Marcel Dekker, Inc., 2003.

    Google Scholar 

  85. Mycek, M. A., K. T. Schomacker, and N. S. Nishioka. Colonic polyp differentiation using time-resolved autofluorescence spectroscopy. Gastrointest. Endosc. 48:390–394, 1998.

    PubMed  CAS  Google Scholar 

  86. Naghavi, M., P. Libby, E. Falk, S. W. Casscells, S. Litovsky, J. Rumberger, J. J. Badimon, C. Stefanadis, P. Moreno, G. Pasterkamp, Z. Fayad, P. H. Stone, S. Waxman, P. Raggi, M. Madjid, A. Zarrabi, A. Burke, C. Yuan, P. J. Fitzgerald, D. S. Siscovick, C. L. de Korte, M. Aikawa, K. E. Juhani Airaksinen, G. Assmann, C. R. Becker, J. H. Chesebro, A. Farb, Z. S. Galis, C. Jackson, I. K. Jang, W. Koenig, R. A. Lodder, K. March, J. Demirovic, M. Navab, S. G. Priori, M. D. Rekhter, R. Bahr, S. M. Grundy, R. Mehran, A. Colombo, E. Boerwinkle, C. Ballantyne, W. Insull, Jr., R. S. Schwartz, R. Vogel, P. W. Serruys, G. K. Hansson, D. P. Faxon, S. Kaul, H. Drexler, P. Greenland, J. E. Muller, R. Virmani, P. M. Ridker, D. P. Zipes, P. K. Shah, and J. T. Willerson. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108:1664–1672, 2003.

    PubMed  Google Scholar 

  87. Nordstrom, R. J., L. Burke, J. M. Niloff, and J. F. Myrtle. Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy. Lasers Surg. Med. 29:118–127, 2001.

    PubMed  CAS  Google Scholar 

  88. O’ Connor, D. V., W. R. Ware, and J. C. Andre. Deconvolution of fluorescence decay curves—critical comparison of techniques. J. Phys. Chem. 83:1333–1343, 1979.

    Google Scholar 

  89. Panjehpour, M., C. E. Julius, M. N. Phan, T. Vo-Dinh, and S. Overholt. Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers. Lasers Surg. Med. 31:367–373, 2002.

    PubMed  Google Scholar 

  90. Pavlova, I., C. R. Weber, R. A. Schwarz, M. Williams, A. El-Naggar, A. Gillenwater, and R. Richards-Kortum. Monte Carlo model to describe depth selective fluorescence spectra of epithelial tissue: applications for diagnosis of oral precancer. J. Biomed. Opt. 13:064012, 2008.

    PubMed  Google Scholar 

  91. Pavlova, I., C. R. Weber, R. A. Schwarz, M. D. Williams, A. M. Gillenwater, and R. Richards-Kortum. Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties. J. Biomed. Opt. 14:014009, 2009.

    PubMed  Google Scholar 

  92. Pfefer, T. J., D. Y. Paithankar, J. M. Poneros, K. T. Schomacker, and N. S. Nishioka. Temporally and spectrally resolved fluorescence spectroscopy for the detection of high grade dysplasia in Barrett’s esophagus. Lasers Surg. Med. 32:10–16, 2003.

    PubMed  Google Scholar 

  93. Phipps, J. E., N. Hatami, Z. S. Galis, J. D. Baker, M. C. Fishbein, and L. Marcu. A fluorescence lifetime spectroscopy study of matrix metalloproteinases-2 and -9 in human atherosclerotic plaque. J. Biophotonics 4:650–658, 2011.

    PubMed  CAS  Google Scholar 

  94. Pitts, D. J., and M.-A. Mycek. Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution. Rev. Sci. Instrum. 72:3061–3072, 2001.

    CAS  Google Scholar 

  95. Pogue, B. W., S. Gibbs-Strauss, P. A. Valdes, K. Samkoe, D. W. Roberts, and K. D. Paulsen. Review of Neurosurgical Fluorescence Imaging methodologies. IEEE J. Sel. Top. Quantum Electron. 16:493–505, 2010.

    PubMed  CAS  Google Scholar 

  96. Rajaram, N., J. S. Reichenberg, M. R. Migden, T. H. Nguyen, and J. W. Tunnell. Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer. Lasers Surg. Med. 42:716–727, 2010.

    PubMed  Google Scholar 

  97. Ramanujam, N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2:89–117, 2000.

    PubMed  CAS  Google Scholar 

  98. Redden Weber, C., R. A. Schwarz, E. N. Atkinson, D. D. Cox, C. Macaulay, M. Follen, and R. Richards-Kortum. Model-based analysis of reflectance and fluorescence spectra for in vivo detection of cervical dysplasia and cancer. J. Biomed. Opt. 13:064016, 2008.

    PubMed  Google Scholar 

  99. Richards-Kortum, R., and E. Sevick-Muraca. Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Phys. Chem. 47:555–606, 1996.

    PubMed  CAS  Google Scholar 

  100. Roberts, M. S., Y. Dancik, T. W. Prow, C. A. Thorling, L. L. Lin, J. E. Grice, T. A. Robertson, K. Konig, and W. Becker. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy. Eur. J. Pharm. Biopharm. 77:469–488, 2011.

    PubMed  CAS  Google Scholar 

  101. Roblyer, D., C. Kurachi, V. Stepanek, M. D. Williams, A. K. El-Naggar, J. J. Lee, A. M. Gillenwater, and R. Richards-Kortum. Objective detection and delineation of oral neoplasia using autofluorescence imaging. Cancer Prev. Res. (Phila.) 2:423–431, 2009.

    Google Scholar 

  102. Roblyer, D., R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater. Multispectral optical imaging device for in vivo detection of oral neoplasia. J. Biomed. Opt. 13:024019, 2008.

    PubMed  Google Scholar 

  103. Rydell, R., C. Eker, S. Andersson-Engels, A. Krogdahl, P. Wahlberg, and K. Svanberg. Fluorescence investigations to classify malignant laryngeal lesions in vivo. Head Neck 30:419–426, 2008.

    PubMed  Google Scholar 

  104. Scepanovic, O. R., M. Fitzmaurice, A. Miller, C. R. Kong, Z. Volynskaya, R. R. Dasari, J. R. Kramer, and M. S. Feld. Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque. J. Biomed. Opt. 16:011009, 2011.

    PubMed  Google Scholar 

  105. Schwarz, R. A., W. Gao, D. Daye, M. D. Williams, R. Richards-Kortum, and A. M. Gillenwater. Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe. Appl. Opt. 47:825–834, 2008.

    PubMed  Google Scholar 

  106. Schwarz, R. A., W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater. Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy. Cancer 115:1669–1679, 2009.

    PubMed  Google Scholar 

  107. Schweitzer, D., M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard. In vivo measurement of time-resolved autofluorescence at the human fundus. J. Biomed. Opt. 9:1214–1222, 2004.

    PubMed  Google Scholar 

  108. Schweitzer, D., S. Quick, M. Klemm, M. Hammer, S. Jentsch, and J. Dawczynski. Time-resolved autofluorescence in retinal vascular occlusions. Ophthalmologe 107:1145–1152, 2010.

    PubMed  CAS  Google Scholar 

  109. Schweitzer, D., S. Quick, S. Schenke, M. Klemm, S. Gehlert, M. Hammer, S. Jentsch, and J. Fischer. Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD. Ophthalmologe 106:714–722, 2009.

    PubMed  CAS  Google Scholar 

  110. Sevick-Muraca, E. M., R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad. Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology 246:734–741, 2008.

    PubMed  Google Scholar 

  111. Sun, Y., A. J. Chaudhari, M. Lam, H. Xie, D. R. Yankelevich, J. Phipps, J. Liu, M. C. Fishbein, J. M. Cannata, K. K. Shung, and L. Marcu. Multimodal characterization of compositional, structural and functional features of human atherosclerotic plaques. Biomed. Opt. Expres. 2:2288–2298, 2011.

    Google Scholar 

  112. Sun, Y., N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu. Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery. J. Biomed. Opt. 15:056022, 2010.

    PubMed  Google Scholar 

  113. Sun, Y., J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu. Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy. Rev. Sci. Instrum. 80:065104, 2009.

    PubMed  Google Scholar 

  114. Sun, Y., J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu. Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. Opt. Lett. 34:2081–2083, 2009.

    PubMed  CAS  Google Scholar 

  115. Sun, Y., Y. Sun, D. Stephens, H. Xie, J. Phipps, R. Saroufeem, J. Southard, D. S. Elson, and L. Marcu. Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis. Opt. Express 19:3890–3901, 2011.

    PubMed  CAS  Google Scholar 

  116. Sun, Y., J. Meier, N. Hatami, J. Phipps, R. J. Schrot, B. Poirier, G. Farwell, D. Elson, and L. Marcu. Fluorescence Lifetime Imaging Microscopy (FLIM) for intraoperative tumor delineation: a study in patients. BODA, 2011.

  117. Suzuki, H., Y. Saito, H. Ikehara, and I. Oda. Evaluation of visualization of squamous cell carcinoma of esophagus and pharynx using an autofluorescence imaging videoendoscope system. J. Gastroenterol. Hepatol. 24:1834–1839, 2009.

    PubMed  Google Scholar 

  118. Thekkek, N., and R. Richards-Kortum. Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nat. Rev. Cancer 8:725–731, 2008.

    PubMed  CAS  Google Scholar 

  119. Thiberville, L., M. Salaun, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly. Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur. Respir. J. 33:974–985, 2009.

    PubMed  CAS  Google Scholar 

  120. Toms, S. A., W. C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen. Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity. Neurosurgery 61:327–335; discussion 335–336, 2007.

    PubMed  Google Scholar 

  121. Udenfriend, S., 1969. Fluorescence assay in biology and medicine. In: Molecular Biology, edited by R. Consden. London: Academic Press, I and II 1969, pp. 517–660.

  122. Uehlinger, P., T. Gabrecht, T. Glanzmann, J. P. Ballini, A. Radu, S. Andrejevic, P. Monnier, and G. Wagnieres. In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence. J. Biomed. Opt. 14:024011, 2009.

    PubMed  Google Scholar 

  123. Utzinger, U., and R. R. Richards-Kortum. Fiber optic probes for biomedical optical spectroscopy. J. Biomed. Opt. 8:121–147, 2003.

    PubMed  Google Scholar 

  124. Vedeswari, C. P., S. Jayachandran, and S. Ganesan. In vivo autofluorescence characteristics of pre- and post-treated oral submucous fibrosis: a pilot study. Indian J. Dent. Res. 20:261–267, 2009.

    PubMed  Google Scholar 

  125. Wagnieres, G. A., W. M. Star, and B. C. Wilson. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem. Photobiol. 68:603–632, 1998.

    PubMed  CAS  Google Scholar 

  126. Ware, W. R., L. J. Doemeny, and T. L. Nemzek. Deconvolution of Fluorescence and Phosphorescence Decay Curves - Least-Squares Method. J. Phy. Chem. 77:2038–2048, 1973.

    CAS  Google Scholar 

  127. Wilson, B. C. Detection and treatment of dysplasia in Barrett’s esophagus: a pivotal challenge in translating biophotonics from bench to bedside. J. Biomed. Opt. 12:051401, 2007.

    PubMed  Google Scholar 

  128. www.novadaq.com/. Accessed December 30, 2011.

  129. www.karlstorz.com/. Accessed December 30, 2011.

  130. www.pentaxmedical.com/. Accessed December 30, 2011.

  131. www.richardwolfusa.com/. Accessed December 30, 2011.

  132. www.guidedinc.com/. Accessed December 30, 2011.

  133. www.velscope.com/. Accessed December 30, 2011.

  134. www.jenlab.de/DermaInspect-R.29.0.html. Accessed December 30, 2011.

  135. www.picoquant.com/. Accessed December 30, 2011.

  136. www.becker-hickl.de/. Accessed December 30, 2011.

  137. Zellweger, M., D. Goujon, R. Conde, M. Forrer, H. van den Bergh, and G. Wagnieres. Absolute autofluorescence spectra of human healthy, metaplastic, and early cancerous bronchial tissue in vivo. Appl. Opt. 40:3784–3791, 2001.

    PubMed  CAS  Google Scholar 

  138. Zellweger, M., P. Grosjean, D. Goujon, P. Monnier, H. van den Bergh, and G. Wagnieres. In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers. J. Biomed. Opt. 6:41–51, 2001.

    PubMed  CAS  Google Scholar 

  139. Zhu, C., E. S. Burnside, G. A. Sisney, L. R. Salkowski, J. M. Harter, B. Yu, and N. Ramanujam. Fluorescence spectroscopy: an adjunct diagnostic tool to image-guided core needle biopsy of the breast. IEEE Trans. Biomed. Eng. 56:2518–2528, 2009.

    PubMed  Google Scholar 

  140. Zipfel, W. R., R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl. Acad. Sci. USA 100:7075–7080, 2003.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. D. Schweitzer (University of Jena, Germany) and Dr. G. Wagnieres (Swiss Federal Institute of Technology) for providing support material for this review and their insightful comments. We also thank Dr. H. Xie for his help with literature review. Work in the author’s laboratory has been supported by the National Institutes of Health (R01 HL67377, R21 RR 025818).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Marcu.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcu, L. Fluorescence Lifetime Techniques in Medical Applications. Ann Biomed Eng 40, 304–331 (2012). https://doi.org/10.1007/s10439-011-0495-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0495-y

Keywords

Navigation