Skip to main content
Log in

Altered Lung Motion is a Sensitive Indicator of Regional Lung Disease

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Since lung diseases adversely affect airflow during breathing, they must also alter normal lung motion, which can be exploited to detect these diseases. However, standard imaging techniques such as CT and MRI imaging during breath-holds provide little or no information on lung motion and cannot detect diseases that cause subtle changes in lung structure. Phase-contrast X-ray imaging provides images of high contrast and spatial resolution with temporal resolutions that allow multiple images to be acquired throughout the respiratory cycle. Using X-ray phase-contrast imaging, coupled with velocimetry, we have measured lung tissue movement and determined velocity fields that define speed and direction of regional lung motion throughout a breath in normal Balb/c nude male mice and mice exposed to bleomycin. Regional maps of lung tissue motion reveal both the heterogeneity of normal lung motion, as well as abnormal motion induced by bleomycin treatment. Analysed histologically, bleomycin treatment caused pathological changes in lung structure that were heterogenous, occupying less than 12% of the lung at 6 days after treatment. Moreover, plethysmography failed to detect significant changes in compliance at either 36 h or 6 days after treatment. Detailed analysis of the vector fields demonstrated major differences (p < 0.001) in regional lung motion between control and bleomycin-treated mice at both 36 h and 6 days after treatment. The results of this study demonstrate that X-ray phase-contrast imaging, coupled with velocimetry, can detect early stage, subtle and non-uniform lung disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Adam, J. F., et al. Quantitative functional imaging and kinetic studies with high-Z contrast agents using synchrotron radiation computed tomography. Clin. Exp. Pharmacol. Physiol. 36(1):95–106, 2009.

    Article  PubMed  CAS  Google Scholar 

  2. Adamson, I. Y. R., and D. H. Bowden. Pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Am. J. Pathol. 77(2):185–199, 1974.

    PubMed  CAS  Google Scholar 

  3. Adrian, R. J. Twenty years of particle image velocimetry. Exp. Fluids 39(2):159–169, 2005.

    Article  Google Scholar 

  4. Albert, S. P., et al. The role of time and pressure on alveolar recruitment. J. Appl. Physiol. 106(3):757–765, 2009.

    Article  PubMed  Google Scholar 

  5. Allen, G. B., et al. Pulmonary impedance and alveolar instability during injurious ventilation in rats. J. Appl. Physiol. 99(2):723–730, 2005.

    Article  PubMed  Google Scholar 

  6. Black, C. L. B., et al. Relationship between dynamic respiratory mechanics and disease heterogeneity in sheep lavage injury. Crit. Care Med. 35(3):870–878, 2007.

    Article  Google Scholar 

  7. Boulet, L. P., M. Belanger, and G. Carrier. Airway responsiveness and bronchial-wall thickness in asthma with or without fixed air-flow obstruction. Am. J. Respir. Crit. Care Med. 152(3):865–871, 1995.

    PubMed  CAS  Google Scholar 

  8. Castillo, R., et al. Ventilation from four-dimensional computed tomography: density versus Jacobian methods. Phys. Med. Biol. 55(16):4661–4685, 2010.

    Article  PubMed  Google Scholar 

  9. Christensen, G. E., et al. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry. Med. Phys. 34(6):2155–2163, 2007.

    Article  PubMed  Google Scholar 

  10. Dubsky, S., et al. Computed tomographic X-ray velocimetry. Appl. Phys. Lett. 96(2):023702, 2010.

    Article  Google Scholar 

  11. Fouras, A., D. Lo Jacono, and K. Hourigan. Target-free Stereo PIV: a novel technique with inherent error estimation and improved accuracy. Exp. Fluids 44(2):317–329, 2008.

    Article  Google Scholar 

  12. Fouras, A., and J. Soria. Accuracy of out-of-plane vorticity measurements derived from in-plane velocity field data. Exp. Fluids 25(5–6):409–430, 1998.

    Article  Google Scholar 

  13. Fouras, A., et al. Three-dimensional synchrotron X-ray particle image velocimetry. J. Appl. Phys. 102(6):064916, 2007.

    Article  Google Scholar 

  14. Guerrero, T., et al. Quantification of regional ventilation from treatment planning CT. Int. J. Radiat. Oncol. Biol. Phys. 62(3):630–634, 2005.

    Article  PubMed  Google Scholar 

  15. Guerrero, T., et al. Dynamic ventilation imaging from four-dimensional computed tomography. Phys. Med. Biol. 51(4):777–791, 2006.

    Article  PubMed  Google Scholar 

  16. Hodgson, M. J., D. K. Parkinson, and M. Karpf. Chest X-rays in hypersensitivity pneumonitis—a metaanalysis of secular trend. Am. J. Ind. Med. 16(1):45–53, 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Hoffman, E. A., et al. Estimation of regional pleural surface expansile forces in intact dogs. J. Appl. Physiol. 55(3):935–948, 1983.

    PubMed  CAS  Google Scholar 

  18. Hogg, J. C. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364(9435):709–721, 2004.

    Article  PubMed  Google Scholar 

  19. Hooper, S. B., et al. Imaging lung aeration and lung liquid clearance at birth. FASEB J. 21(12):3329–3337, 2007.

    Article  PubMed  CAS  Google Scholar 

  20. Hooper, S. B., et al. Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging. Clin. Exp. Pharmacol. Physiol. 36(1):117–125, 2009.

    Article  PubMed  CAS  Google Scholar 

  21. Hove, J. R., et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919):172–177, 2003.

    Article  PubMed  CAS  Google Scholar 

  22. Hsia, C. C. W., et al. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am. J. Respir. Crit. Care Med. 181(4):394–418, 2010.

    Article  PubMed  Google Scholar 

  23. Im, K. S., et al. Particle tracking velocimetry using fast X-ray phase-contrast imaging. Appl. Phys. Lett. 90(9):3, 2007.

    Article  Google Scholar 

  24. Irvine, S. C., et al. Phase retrieval for improved three-dimensional velocimetry of dynamic X-ray blood speckle. Appl. Phys. Lett. 93(15):153901, 2008.

    Article  Google Scholar 

  25. Jamison, R. A., et al. X-ray velocimetry and haemodynamic forces within a stenosed femoral model at physiological flow rates. Ann. Biomed. Eng. 39(6):1643–1653, 2011.

    Article  PubMed  Google Scholar 

  26. Kitchen, M. J., et al. On the origin of speckle in X-ray Phase Contrast images of lung tissue. Phys. Med. Biol. 49(18):4335–4348, 2004.

    Article  PubMed  CAS  Google Scholar 

  27. Kitchen, M. J., et al. Phase contrast X-ray imaging of mice and rabbit lungs: a comparative study. Br. J. Radiol. 78(935):1018–1027, 2005.

    Article  PubMed  CAS  Google Scholar 

  28. Kitchen, M. J., et al. Dynamic measures of regional lung air volume using Phase Contrast X-ray Imaging. Phys. Med. Biol. 53(21):6065–6077, 2008.

    Article  PubMed  CAS  Google Scholar 

  29. Kitchen, M. J., et al. A new design for high stability pressure-controlled ventilation for small animal lung imaging. J. Instrum. 5:T02002, 2010.

    Article  Google Scholar 

  30. Lai-Fook, S. J., and R. E. Hyatt. Effects of age on elastic moduli of human lungs. J. Appl. Physiol. 89(1):163–168, 2000.

    PubMed  CAS  Google Scholar 

  31. Lazenby, A. J., et al. Remodeling of the lung in bleomycin-induced pulmonary fibrosis in the rat—an immunohistochemical study of laminin, type-IV collagen, and fibronectin. Am. Rev. Respir. Dis. 142(1):206–214, 1990.

    PubMed  CAS  Google Scholar 

  32. Lee, S. J., and G. B. Kim. X-ray particle image velocimetry for measuring quantitative flow information inside opaque objects. J. Appl. Phys. 94(5):3620–3623, 2003.

    Article  CAS  Google Scholar 

  33. Lee, S. J., and G. B. Kim. Synchrotron microimaging technique for measuring the velocity fields of real blood flows. J. Appl. Phys. 97(6):6, 2005.

    Article  Google Scholar 

  34. Lewis, R. A. Medical phase contrast x-ray imaging: current status and future prospects. Phys. Med. Biol. 49(16):3573–3583, 2004.

    Article  PubMed  CAS  Google Scholar 

  35. Lewis, R. A., et al. Dynamic imaging of the lungs using X-ray phase contrast. Phys. Med. Biol. 50(21):5031–5040, 2005.

    Article  PubMed  CAS  Google Scholar 

  36. Maltais, F., et al. Comparison of static and dynamic measurements of intrinsic peep in mechanically ventilated patients. Am. J. Respir. Crit. Care Med. 150(5):1318–1324, 1994.

    PubMed  CAS  Google Scholar 

  37. Manali, E., et al. Static and dynamic mechanics of the murine lung after intratracheal bleomycin. BMC Pulm. Med. 11(1):33, 2011.

    Article  PubMed  Google Scholar 

  38. Nesbitt, W. S., et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15(6):665–673, 2009.

    Article  PubMed  CAS  Google Scholar 

  39. Onodera, M., et al. Determination of ventilatory volume in mice by whole body plethysmography. Jpn. J. Physiol. 47(4):317–326, 1997.

    Article  PubMed  CAS  Google Scholar 

  40. Pan, T., et al. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med. Phys. 31(2):333–340, 2004.

    Article  PubMed  Google Scholar 

  41. Poelma, C., et al. In vivo blood flow and wall shear stress measurements in the vitelline network. Exp. Fluids 45(4):703–713, 2008.

    Article  CAS  Google Scholar 

  42. Reinhardt, J. M., et al. Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation. Med. Image Anal. 12(6):752–763, 2008.

    Article  PubMed  Google Scholar 

  43. Robertson, H. T., et al. High-resolution maps of regional ventilation utilizing inhaled fluorescent microspheres. J. Appl. Physiol. 82(3):943–953, 1997.

    PubMed  CAS  Google Scholar 

  44. Schrier, D. J., S. H. Phan, and B. M. McGarry. The effects of the nude (nu/nu) mutation on bleomycin-induced pulmonary fibrosis—a biochemical evaluation. Am. Rev. Respir. Dis. 127(5):614–617, 1983.

    PubMed  CAS  Google Scholar 

  45. Sethi, S., and T. F. Murphy. Current concepts: infection in the pathogenesis and course of chronic obstructive pulmonary disease. N. Engl. J. Med. 359(22):2355–2365, 2008.

    Article  PubMed  CAS  Google Scholar 

  46. Siew, M. L., et al. Inspiration regulates the rate and temporal pattern of lung liquid clearance and lung aeration at birth. J. Appl. Physiol. 106(6):1888–1895, 2009.

    Article  PubMed  Google Scholar 

  47. Snigirev, A., et al. On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum. 66(12):5486–5492, 1995.

    Article  CAS  Google Scholar 

  48. Sundaram, T. A., and J. C. Gee. Towards a model of lung biomechanics: pulmonary kinematics via registration of serial lung images. Med. Image Anal. 9(6):524–537, 2005.

    Article  PubMed  Google Scholar 

  49. Sznitman, J., et al. Visualization of respiratory flows from 3D reconstructed alveolar airspaces using X-ray tomographic microscopy. J. Vis. 13(4):337–345, 2010.

    Article  Google Scholar 

  50. Tustison, N. J., et al. Pulmonary kinematics from tagged hyperpolarized helium-3 MRI. J. Magn. Reson. Imaging 31(5):1236–1241, 2010.

    Article  PubMed  Google Scholar 

  51. Tustison, N. J., et al. Pulmonary kinematics from image data: a review. Acad. Radiol. 18(4):402–417, 2011.

    Article  PubMed  Google Scholar 

  52. Udalov, S., et al. Effects of phosphodiesterase 4 inhibition on bleomycin-induced pulmonary fibrosis in mice. BMC Pulm. Med. 10:26, 2010.

    Article  PubMed  Google Scholar 

  53. Westneat, M. W., J. J. Socha, and W.-K. Lee. Advances in biological structure, function, and physiology using synchrotron X-ray imaging. Annu. Rev. Physiol. 70:119–142, 2008.

    Article  PubMed  CAS  Google Scholar 

  54. Westneat, M. W., et al. Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science 299(5606):558–560, 2003.

    Article  PubMed  CAS  Google Scholar 

  55. Wilkins, S. W., et al. Phase-contrast imaging using polychromatic hard X-rays. Nature 384(6607):335–338, 1996.

    Article  CAS  Google Scholar 

  56. Yagi, N., et al. Refraction-enhanced X-ray imaging of mouse lung using synchrotron radiation source. Med. Phys. 26(10):2190–2193, 1999.

    Article  PubMed  CAS  Google Scholar 

  57. Yin, Y. B., et al. Simulation of pulmonary air flow with a subject-specific boundary condition. J. Biomech. 43(11):2159–2163, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Charlene Chua for assistance with figures; Melissa Siew for assistance with statistical analysis; David Paganin, Kevin Wheeler, John McDougal, Bruce Thompson and Christopher Stuart-Andrews for discussions. Research is funded by the Australian Research Council (DP110101498), the National Health and Medical Research Council (491103) and supported by beamtime grants from the Japan Synchrotron Radiation Research Institute. We acknowledge travel funding provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron and funded by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fouras.

Additional information

Associate Editor Kenneth R. Lutchen oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 9358 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fouras, A., Allison, B.J., Kitchen, M.J. et al. Altered Lung Motion is a Sensitive Indicator of Regional Lung Disease. Ann Biomed Eng 40, 1160–1169 (2012). https://doi.org/10.1007/s10439-011-0493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0493-0

Keywords

Navigation