Skip to main content
Log in

The Effects of a Three-Dimensional, Saddle-Shaped Annulus on Anterior and Posterior Leaflet Stretch and Regurgitation of the Tricuspid Valve

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tricuspid regurgitation (TR) is present in trace amounts or more in 82–86% of the population and is greater than mild in 14% of the population. In severe cases, it can contribute to right heart failure and adversely affect mitral valve repair durability. One major cause of TR is the dilation of the tricuspid annulus, which alters the geometry of the annulus from a saddle-shape to a more planar profile. Another cause of TR is the displacement of the papillary muscles (PMs), which results from right ventricular dilation. The objective of this study was to identify the effect of a saddle-shaped annulus on native tricuspid leaflet stretch mechanics and TR. In addition, the effects of geometric alterations, including annular dilatation and PM displacement, on leaflet stretch was investigated. Fresh porcine tricuspid valves (TVs) (n = 8) were excised and sutured to an adjustable three-dimensional annulus plate (allowing for dilatation and saddle-shape) and three PM attachment rods. The valve was then placed in the in vitro Georgia Tech right heart simulator. Dual-camera photogrammetry, was used to quantify the stretch ratio experienced by the valve leaflets at peak systole for the following conditions: physiologically normal, 100% annular dilatation, displaced PMs, and a combination of annular dilatation and PM displacement. In addition, a saddle and flat annulus were implemented for each of the four conditions. PM displacement was simulated by displacing all PMs by 10 mm in all directions (laterally, apically, posteriorly/anteriorly). The physiologically normal condition—normal annulus area, saddle-shaped annulus with PMs in a normal position, was used as a control. The results showed that the posterior leaflet exhibited significantly (p ≤ 0.05) higher major and areal stretch ratios as compared to the anterior leaflet at peak systole for all conditions tested. No significant difference was seen in stretch when a flat annulus was compared to saddle for the anterior or posterior leaflet for normal or disease conditions. Investigation of the impact of disease found a significant increase (p ≤ 0.10) in stretch in the posterior leaflet with a combination of annular dilatation and PM displacement (2.01 ± 0.68) as compared to the normal condition with a saddle annulus (1.43 ± 0.20). In addition displacement of the PMs resulted in a significant (p ≤ 0.01) reduction in TR, although the actual volume reduced was minimal (1.2 mL). Stretch values were measured for the anterior and posterior leaflet under both physiologic and pathologic conditions for the first time. Further, these results provide an understanding of the effects of geometric parameters on valve mechanics and function, which may lead to improved TV repairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Antunes, M. J., and J. B. Barlow. Management of tricuspid valve regurgitation. Heart 93(2):271–276, 2007.

    Article  PubMed  Google Scholar 

  2. Anyanwu, A. C., J. Chikwe, and D. H. Adams. Tricuspid valve repair for treatment and prevention of secondary tricuspid regurgitation in patients undergoing mitral valve surgery. Curr. Cardiol. Rep. 10(2):110–117, 2008.

    Article  PubMed  Google Scholar 

  3. Chen, L., F. C. P. Yin, and K. May-Newman. The structure and mechanical properties of the mitral valve leaflet-strut chordae transition zone. J. Biomech. Eng. Trans. ASME 126(2):244–251, 2004.

    Article  Google Scholar 

  4. Dreyfus, G. D., P. J. Corbi, J. Chan, and T. Bahrami. Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair? Ann. Thorac. Surg. 79(1):127–132, 2005.

    Article  PubMed  Google Scholar 

  5. Fukuda, S., A. M. Gillinov, P. M. McCarthy, et al. Determinants of recurrent or residual functional tricuspid regurgitation after tricuspid annuloplasty. Circulation 114:I582–I587, 2006.

    PubMed  Google Scholar 

  6. Grashow, J. S., A. P. Yoganathan, and M. S. Sacks. Biaixal stress–stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34(2):315–325, 2006.

    Article  PubMed  Google Scholar 

  7. He, Z., J. Ritchie, J. S. Grashow, M. S. Sacks, and A. P. Yoganathan. In vitro dynamic strain behavior of the mitral valve posterior leaflet. J. Biomech. Eng. 127(3):504–511, 2005.

    Article  PubMed  Google Scholar 

  8. He, Z. M., M. S. Sacks, L. Baijens, S. Wanant, P. Shah, and A. P. Yoganathan. Effects of papillary muscle position on in vitro dynamic strain on the porcine mitral valve. J. Heart Valve Dis. 12(4):488–494, 2003.

    PubMed  Google Scholar 

  9. Jimenez, J. H., S. W. Liou, M. Padala, et al. A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. J. Thorac. Cardiovasc. Surg. 134(6):1562–1568, 2007.

    Article  PubMed  Google Scholar 

  10. Kaplan, S. R., G. Bashein, F. H. Sheehan, et al. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am. Heart J. 139(3):378–387, 2000.

    Article  PubMed  CAS  Google Scholar 

  11. Levine, R. A., M. O. Triulzi, P. Harrigan, and A. E. Weyman. The relationship of mitral annular shape to the diagnosis of mitral-valve prolapse. Circulation 75(4):756–767, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Marui, A., T. Mochizuki, N. Mitsui, T. Koyama, and M. Horibe. Isolated tricuspid regurgitation caused by a dilated tricuspid annulus. Ann. Thorac. Surg. 66(2):560–562, 1998.

    Article  PubMed  CAS  Google Scholar 

  13. Nath, J., E. Foster, and P. A. Heidenreich. Impact of tricuspid regurgitation on long-term survival. J. Am. Coll. Cardiol. 43(3):405–409, 2004.

    Article  PubMed  Google Scholar 

  14. Padala, M., R. A. Hutchison, L. R. Croft, et al. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann. Thorac. Surg. 88(5):1499–1505, 2009.

    Article  PubMed  Google Scholar 

  15. Padala, M., M. S. Sacks, S. W. Liou, K. Balachandran, Z. M. He, and A. P. Yoganathan. Mechanics of the mitral valve strut chordae insertion region. J. Biomech. Eng. Trans. ASME 132(8):81004, 2010.

    Article  Google Scholar 

  16. Park, Y. H., J. M. Song, E. Y. Lee, Y. J. Kim, D. H. Kang, and J. K. Song. Geometric and hemodynamic determinants of functional tricuspid regurgitation: a real-time three-dimensional echocardiography study. Int. J. Cardiol. 124(2):160–165, 2008.

    Article  PubMed  Google Scholar 

  17. Seo, H. S., J. W. Ha, J. Y. Moon, et al. Right ventricular remodeling and dysfunction with subsequent annular dilatation and tethering as a mechanism of isolated tricuspid regurgitation. Circ. J. 72(10):1645–1649, 2008.

    Article  PubMed  Google Scholar 

  18. Shah, P. M., and A. A. Raney. Tricuspid valve disease. Curr. Probl. Cardiol. 33(2):47–84, 2008.

    Article  PubMed  Google Scholar 

  19. Silver, M. D., J. H. Lam, N. Ranganathan, and E. D. Wigle. Morphology of the human tricuspid valve. Circulation 43(3):333–348, 1971.

    PubMed  CAS  Google Scholar 

  20. Singh, J. P., J. C. Evans, D. Levy, et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am. J. Cardiol. 83(6):897–902, 1999.

    Article  PubMed  CAS  Google Scholar 

  21. Skwarek, M., J. Hreczecha, M. Dudziak, and M. Grzybiak. The morphology of the right atrioventricular valve in the adult human heart. Folia Morphol. (Warsz) 65(3):200–208, 2006.

    CAS  Google Scholar 

  22. Smith, D. B., M. S. Sacks, D. A. Vorp, and M. Thornton. Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann. Biomed. Eng. 28(6):598–611, 2000.

    Article  PubMed  CAS  Google Scholar 

  23. Spinner, E. M., P. Shannon, D. Buice, et al. In vitro characterization of the mechanisms responsible for functional tricuspid regurgitation. Circulation 124(8):920–929, 2011.

    Article  PubMed  Google Scholar 

  24. Stevanella, M., E. Votta, M. Lemma, C. Antona, and A. Redaelli. Finite element modelling of the tricuspid valve: a preliminary study. Med. Eng. Phys. 32(10):1213–1223, 2010.

    Article  PubMed  Google Scholar 

  25. Tei, C., J. P. Pilgrim, P. M. Shah, J. A. Ormiston, and M. Wong. The tricuspid valve annulus: study of size and motion in normal subjects and in patients with tricuspid regurgitation. Circulation 66(3):665–671, 1982.

    Article  PubMed  CAS  Google Scholar 

  26. Ton-Nu, T. T., R. A. Levine, M. D. Handschumacher, et al. Geometric determinants of functional tricuspid regurgitation—insights from 3-dimensional echocardiography. Circulation 114(2):143–149, 2006.

    Article  PubMed  Google Scholar 

  27. Yap, C. H., H. S. Kim, K. Balachandran, M. Weiler, R. Haj-Ali, and A. P. Yoganathan. Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions. Am. J. Physiol. Heart Circ. Physiol. 298(2):H395–H405, 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jean-Pierre Rabbah for his intellectual discussion and critical review of the manuscript and Holifield Farms for donation of the porcine hearts.

Funding

American Heart Association Predoctoral Fellowship 09PRE2380090, Wallace H. Coulter Distinguished Faculty Chair Endowment and Georgia Institute of Technology, Tom and Shirley Gurley and the Georgia Tech Presidential Undergraduate Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spinner, E.M., Buice, D., Yap, C.H. et al. The Effects of a Three-Dimensional, Saddle-Shaped Annulus on Anterior and Posterior Leaflet Stretch and Regurgitation of the Tricuspid Valve. Ann Biomed Eng 40, 996–1005 (2012). https://doi.org/10.1007/s10439-011-0471-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0471-6

Keywords

Navigation