Skip to main content
Log in

Endothelial Cell Micropatterning: Methods, Effects, and Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The effects of flow on endothelial cells (ECs) have been widely examined for the ability of fluid shear stress to alter cell morphology and function; however, the effects of EC morphology without flow have only recently been observed. An increase in lithographic techniques in cell culture spurred a corresponding increase in research aiming to confine cell morphology. These studies lead to a better understanding of how morphology and cytoskeletal configuration affect the structure and function of the cells. This review examines EC micropatterning research by exploring both the many alternative methods used to alter EC morphology and the resulting changes in cellular shape and phenotype. Micropatterning induced changes in EC proliferation, apoptosis, cytoskeletal organization, mechanical properties, and cell functionality. Finally, the ways these cellular manipulation techniques have been applied to biomedical engineering research, including angiogenesis, cell migration, and tissue engineering, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Amirpour, M. L., P. Ghosh, W. M. Lackowski, R. M. Crooks, and M. V. Pishko. Mammalian cell cultures on micropatterned surfaces of weak-acid, polyelectrolyte hyperbranched thin films on gold. Anal. Chem. 73:1560–1566, 2001.

    Article  PubMed  CAS  Google Scholar 

  2. Barbucci, R., S. Lamponi, A. Magnani, and D. Pasqui. Micropatterned surfaces for the control of endothelial cell behaviour. Biomol. Eng. 19:161–170, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. Barbucci, R., S. Lamponi, A. Magnani, F. M. Piras, A. Rossi, and E. Weber. Role of the Hyal-Cu (II) complex on bovine aortic and lymphatic endothelial cells behavior on microstructured surfaces. Biomacromolecules 6:212–219, 2005.

    Article  PubMed  CAS  Google Scholar 

  4. Bhadriraju, K., M. Yang, S. Alom Ruiz, D. Pirone, J. Tan, and C. S. Chen. Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension. Exp. Cell Res. 313:3616–3623, 2007.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, C. S., J. L. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307:355–361, 2003.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science 276:1425–1428, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 14:356–363, 1998.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, Y. M., K. C. Shen, J. P. Gong, and Y. Osada. Selective cell spreading, proliferation, and orientation on micropatterned gel surfaces. J. Nanosci. Nanotechnol. 7:773–779, 2007.

    Article  PubMed  CAS  Google Scholar 

  9. Chi, J. T., H. Y. Chang, G. Haraldsen, F. L. Jahnsen, O. G. Troyanskaya, D. S. Chang, Z. Wang, S. G. Rockson, M. van de Rijn, D. Botstein, and P. O. Brown. Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. USA 100:10623–10628, 2003.

    Article  PubMed  CAS  Google Scholar 

  10. Co, C. C., Y. C. Wang, and C. C. Ho. Biocompatible micropatterning of two different cell types. J. Am. Chem. Soc. 127:1598–1599, 2005.

    Article  PubMed  CAS  Google Scholar 

  11. Cui, X., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227, 2009.

    Article  PubMed  CAS  Google Scholar 

  12. Davies, P. F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6:16–26, 2009.

    Article  PubMed  CAS  Google Scholar 

  13. Daxini, S. C., J. W. Nichol, A. L. Sieminski, G. Smith, K. J. Gooch, and V. P. Shastri. Micropatterned polymer surfaces improve retention of endothelial cells exposed to flow-induced shear stress. Biorheology 43:45–55, 2006.

    PubMed  CAS  Google Scholar 

  14. del Alamo, J. C., G. N. Norwich, Y. S. Li, J. C. Lasheras, and S. Chien. Anisotropic rheology and directional mechanotransduction in vascular endothelial cells. Proc. Natl. Acad. Sci. USA 105:15411–15416, 2008.

    Article  PubMed  CAS  Google Scholar 

  15. Deng, D. X., A. Tsalenko, A. Vailaya, A. Ben-Dor, R. Kundu, I. Estay, R. Tabibiazar, R. Kincaid, Z. Yakhini, L. Bruhn, and T. Quertermous. Differences in vascular bed disease susceptibility reflect differences in gene expression response to atherogenic stimuli. Circ. Res. 98:200–208, 2006.

    Article  PubMed  CAS  Google Scholar 

  16. Di Canio, C., S. Lamponi, and R. Barbucci. Spiral and square microstructured surfaces: the effect of the decreasing size of photo-immobilized hyaluronan domains on cell growth. J. Biomed. Mater. Res. A 92:276–284, 2010.

    PubMed  Google Scholar 

  17. Dike, L. E., C. S. Chen, M. Mrksich, J. Tien, G. M. Whitesides, and D. E. Ingber. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell. Dev. Biol. Anim. 35:441–448, 1999.

    Article  PubMed  CAS  Google Scholar 

  18. Duncan, A. C., F. Rouais, S. Lazare, L. Bordenave, and C. Baquey. Effect of laser modified surface microtopochemistry on endothelial cell growth. Colloids Surf. B 54:150–159, 2007.

    Article  CAS  Google Scholar 

  19. Elloumi Hannachi, I., K. Itoga, Y. Kumashiro, J. Kobayashi, M. Yamato, and T. Okano. Fabrication of transferable micropatterned-co-cultured cell sheets with microcontact printing. Biomaterials 30:5427–5432, 2009.

    Article  PubMed  Google Scholar 

  20. Elloumi-Hannachi, I., M. Maeda, M. Yamato, and T. Okano. Portable microcontact printing device for cell culture. Biomaterials 31:8974–8979, 2010.

    Article  PubMed  CAS  Google Scholar 

  21. Feinberg, A. W., J. F. Schumacher, and A. B. Brennan. Engineering high-density endothelial cell monolayers on soft substrates. Acta Biomater. 5:2013–2024, 2009.

    Article  PubMed  CAS  Google Scholar 

  22. Feinberg, A. W., W. R. Wilkerson, C. A. Seegert, A. L. Gibson, L. Hoipkemeier-Wilson, and A. B. Brennan. Systematic variation of microtopography, surface chemistry and elastic modulus and the state dependent effect on endothelial cell alignment. J. Biomed. Mater. Res. A 86:522–534, 2008.

    PubMed  Google Scholar 

  23. Flusberg, D. A., Y. Numaguchi, and D. E. Ingber. Cooperative control of Akt phosphorylation, bcl-2 expression, and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells. Mol. Biol. Cell 12:3087–3094, 2001.

    PubMed  CAS  Google Scholar 

  24. Gagne, L., G. Rivera, and G. Laroche. Micropatterning with aerosols: application for biomaterials. Biomaterials 27:5430–5439, 2006.

    Article  PubMed  CAS  Google Scholar 

  25. Gao, D., G. Kumar, C. Co, and C. C. Ho. Formation of capillary tube-like structures on micropatterned biomaterials. Adv. Exp. Med. Biol. 614:199–205, 2008.

    Article  PubMed  CAS  Google Scholar 

  26. Gauvreau, V., and G. Laroche. Micropattern printing of adhesion, spreading, and migration peptides on poly(tetrafluoroethylene) films to promote endothelialization. Bioconjug. Chem. 16:1088–1097, 2005.

    Article  PubMed  CAS  Google Scholar 

  27. Gray, D. S., W. F. Liu, C. J. Shen, K. Bhadriraju, C. M. Nelson, and C. S. Chen. Engineering amount of cell–cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton. Exp. Cell Res. 314:2846–2854, 2008.

    Article  PubMed  CAS  Google Scholar 

  28. Gray, D. S., J. Tien, and C. S. Chen. Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J. Biomed. Mater. Res. A 66:605–614, 2003.

    Article  PubMed  Google Scholar 

  29. Guillemot, F., A. Souquet, S. Catros, B. Guillotin, J. Lopez, M. Faucon, B. Pippenger, R. Bareille, M. Remy, S. Bellance, P. Chabassier, J. C. Fricain, and J. Amedee. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 6:2494–2500, 2010.

    Article  PubMed  CAS  Google Scholar 

  30. Hsu, S., R. Thakar, and S. Li. Haptotaxis of endothelial cell migration under flow. Methods Mol. Med. 139:237–250, 2007.

    Article  PubMed  Google Scholar 

  31. Hsu, S., R. Thakar, D. Liepmann, and S. Li. Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces. Biochem. Biophys. Res. Commun. 337:401–409, 2005.

    Article  PubMed  CAS  Google Scholar 

  32. Huang, N. F., B. Patlolla, O. Abilez, H. Sharma, J. Rajadas, R. E. Beygui, C. K. Zarins, and J. P. Cooke. A matrix micropatterning platform for cell localization and stem cell fate determination. Acta Biomater. 6:4614–4621, 2010.

    Article  PubMed  CAS  Google Scholar 

  33. Ito, Y., H. Hasuda, H. Terai, and T. Kitajima. Culture of human umbilical vein endothelial cells on immobilized vascular endothelial growth factor. J. Biomed. Mater. Res. A 74:659–665, 2005.

    PubMed  Google Scholar 

  34. Itoga, K., J. Kobayashi, Y. Tsuda, M. Yamato, and T. Okano. Second-generation maskless photolithography device for surface micropatterning and microfluidic channel fabrication. Anal. Chem. 80:1323–1327, 2008.

    Article  PubMed  CAS  Google Scholar 

  35. Itoga, K., J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano. Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns. Biomaterials 27:3005–3009, 2006.

    Article  PubMed  CAS  Google Scholar 

  36. Itoga, K., M. Yamato, J. Kobayashi, A. Kikuchi, and T. Okano. Cell micropatterning using photopolymerization with a liquid crystal device commercial projector. Biomaterials 25:2047–2053, 2004.

    Article  PubMed  CAS  Google Scholar 

  37. Itoga, K., M. Yamato, J. Kobayashi, A. Kikuchi, and T. Okano. Micropatterned surfaces prepared using a liquid crystal projector-modified photopolymerization device and microfluidics. J. Biomed. Mater. Res. A 69:391–397, 2004.

    Article  PubMed  Google Scholar 

  38. Iwanaga, S., Y. Akiyama, A. Kikuchi, M. Yamato, K. Sakai, and T. Okano. Fabrication of a cell array on ultrathin hydrophilic polymer gels utilising electron beam irradiation and UV excimer laser ablation. Biomaterials 26:5395–5404, 2005.

    Article  PubMed  CAS  Google Scholar 

  39. Janakiraman, V., B. L. Kienitz, and H. Baskaran. Lithography technique for topographical micropatterning of collagen-glycosaminoglycan membranes for tissue engineering applications. J. Med. Device 1:233–237, 2007.

    Article  PubMed  Google Scholar 

  40. Jang, K., K. Sato, Y. Tanaka, Y. Xu, M. Sato, T. Nakajima, K. Mawatari, T. Konno, K. Ishihara, and T. Kitamori. An efficient surface modification using 2-methacryloyloxyethyl phosphorylcholine to control cell attachment via photochemical reaction in a microchannel. Lab Chip 10:1937–1945, 2010.

    Article  PubMed  CAS  Google Scholar 

  41. Jiang, X., S. Takayama, X. Qian, E. Ostuni, H. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides. Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane). Langmuir 18:3273–3280, 2002.

    Article  CAS  Google Scholar 

  42. Kam, L., and S. G. Boxer. Cell adhesion to protein-micropatterned-supported lipid bilayer membranes. J. Biomed. Mater. Res. 55:487–495, 2001.

    Article  PubMed  CAS  Google Scholar 

  43. Kato, S., J. Ando, and T. Matsuda. MRNA expression on shape-engineered endothelial cells: adhesion molecules ICAM-1 and VCAM-1. J. Biomed. Mater. Res. 54:366–372, 2001.

    Article  PubMed  CAS  Google Scholar 

  44. Kidoaki, S., and T. Matsuda. Shape-engineered vascular endothelial cells: nitric oxide production, cell elasticity, and actin cytoskeletal features. J. Biomed. Mater. Res. A 81:728–735, 2007.

    PubMed  Google Scholar 

  45. Kofron, C. M., and D. Hoffman-Kim. Optimization by response surface methodology of confluent and aligned cellular monolayers for nerve guidance. Cell. Mol. Bioeng. 2:554–572, 2009.

    Article  PubMed  Google Scholar 

  46. Kulkarni, S. S., R. Orth, M. Ferrari, and N. I. Moldovan. Micropatterning of endothelial cells by guided stimulation with angiogenic factors. Biosens. Bioelectron. 19:1401–1407, 2004.

    Article  PubMed  CAS  Google Scholar 

  47. Lamponi, S., C. Di Canio, M. Forbicioni, and R. Barbucci. Heterotypic interaction of fibroblasts and endothelial cells on restricted area. J. Biomed. Mater. Res. A 92:733–745, 2010.

    PubMed  CAS  Google Scholar 

  48. Lamponi, S., M. Forbicioni, and R. Barbucci. The role of fibronectin in cell adhesion to spiral patterned TiO2 nanoparticles. J. Appl. Biomater. Biomech. 7:104–110, 2009.

    PubMed  CAS  Google Scholar 

  49. Lawson, N. D., and B. M. Weinstein. Arteries and veins: making a difference with zebrafish. Nat. Rev. Genet. 3:674–682, 2002.

    Article  PubMed  CAS  Google Scholar 

  50. Leslie-Barbick, J. E., C. Shen, C. Chen, and J. L. West. Micron-scale spatially patterned, covalently immobilized vascular endothelial growth factor on hydrogels accelerates endothelial tubulogenesis and increases cellular angiogenic responses. Tissue Eng. A 17:221–229, 2011.

    Article  CAS  Google Scholar 

  51. Li, S., S. Bhatia, Y. L. Hu, Y. T. Shiu, Y. S. Li, S. Usami, and S. Chien. Effects of morphological patterning on endothelial cell migration. Biorheology 38:101–108, 2001.

    PubMed  CAS  Google Scholar 

  52. Lidington, E. A., D. L. Moyes, A. M. McCormack, and M. L. Rose. A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions. Transpl. Immunol. 7:239–246, 1999.

    Article  PubMed  CAS  Google Scholar 

  53. Lin, X., and B. P. Helmke. Micropatterned structural control suppresses mechanotaxis of endothelial cells. Biophys. J. 95:3066–3078, 2008.

    Article  PubMed  CAS  Google Scholar 

  54. Liu, W. F., C. M. Nelson, J. L. Tan, and C. S. Chen. Cadherins, RhoA, and Rac1 are differentially required for stretch-mediated proliferation in endothelial versus smooth muscle cells. Circ. Res. 101:e44–e52, 2007.

    Article  PubMed  CAS  Google Scholar 

  55. Matsuda, T., K. Inoue, and T. Sugawara. Development of micropatterning technology for cultured cells. ASAIO Trans. 36:M559–M562, 1990.

    PubMed  CAS  Google Scholar 

  56. Matsuda, T., and T. Sugawara. Development of surface photochemical modification method for micropatterning of cultured cells. J. Biomed. Mater. Res. 29:749–756, 1995.

    Article  PubMed  CAS  Google Scholar 

  57. Moon, J. J., M. S. Hahn, I. Kim, B. A. Nsiah, and J. L. West. Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng. A 15:579–585, 2009.

    Article  CAS  Google Scholar 

  58. Nahmias, Y. K., B. Z. Gao, and D. J. Odde. Dimensionless parameters for the design of optical traps and laser guidance systems. Appl. Opt. 43:3999–4006, 2004.

    Article  PubMed  Google Scholar 

  59. Nahmias, Y., and D. J. Odde. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nat. Protoc. 1:2288–2296, 2006.

    Article  PubMed  CAS  Google Scholar 

  60. Nakamura, M., A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 11:1658–1666, 2005.

    Article  PubMed  CAS  Google Scholar 

  61. Nakayama, Y., J. M. Anderson, and T. Matsuda. Laboratory-scale mass production of a multi-micropatterned grafted surface with different polymer regions. J. Biomed. Mater. Res. 53:584–591, 2000.

    Article  PubMed  CAS  Google Scholar 

  62. Nelson, C. M., D. M. Pirone, J. L. Tan, and C. S. Chen. Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol. Biol. Cell 15:2943–2953, 2004.

    Article  PubMed  CAS  Google Scholar 

  63. Nishiyama, Y., M. Nakamura, C. Henmi, K. Yamaguchi, S. Mochizuki, H. Nakagawa, and K. Takiura. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J. Biomech. Eng. 131:035001, 2009.

    Article  PubMed  Google Scholar 

  64. Okochi, N., T. Okazaki, and H. Hattori. Encouraging effect of cadherin-mediated cell–cell junctions on transfer printing of micropatterned vascular endothelial cells. Langmuir 25:6947–6953, 2009.

    Article  PubMed  CAS  Google Scholar 

  65. Ouyang, M., J. Sun, S. Chien, and Y. Wang. Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors. Proc. Natl. Acad. Sci. USA 105:14353–14358, 2008.

    Article  PubMed  CAS  Google Scholar 

  66. Papenburg, B. J., L. Vogelaar, L. A. Bolhuis-Versteeg, R. G. Lammertink, D. Stamatialis, and M. Wessling. One-step fabrication of porous micropatterned scaffolds to control cell behavior. Biomaterials 28:1998–2009, 2007.

    Article  PubMed  CAS  Google Scholar 

  67. Pompe, T., S. Zschoche, N. Herold, K. Salchert, M. F. Gouzy, C. Sperling, and C. Werner. Maleic anhydride copolymers—a versatile platform for molecular biosurface engineering. Biomacromolecules 4:1072–1079, 2003.

    Article  PubMed  CAS  Google Scholar 

  68. Raghavan, S., C. M. Nelson, J. D. Baranski, E. Lim, and C. S. Chen. Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng. A 16:2255–2263, 2010.

    Article  CAS  Google Scholar 

  69. Rhee, S. W., A. M. Taylor, C. H. Tu, D. H. Cribbs, C. W. Cotman, and N. L. Jeon. Patterned cell culture inside microfluidic devices. Lab Chip 5:102–107, 2005.

    Article  PubMed  CAS  Google Scholar 

  70. Roca-Cusachs, P., J. Alcaraz, R. Sunyer, J. Samitier, R. Farre, and D. Navajas. Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys. J. 94:4984–4995, 2008.

    Article  PubMed  CAS  Google Scholar 

  71. Roger, V. L., A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123:e18–e209, 2011.

    Article  PubMed  Google Scholar 

  72. Sato, M., M. J. Levesque, and R. M. Nerem. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7:276–286, 1987.

    Article  PubMed  CAS  Google Scholar 

  73. Satomi, T., Y. Nagasaki, H. Kobayashi, H. Otsuka, and K. Kataoka. Density control of poly(ethylene glycol) layer to regulate cellular attachment. Langmuir 23:6698–6703, 2007.

    Article  PubMed  CAS  Google Scholar 

  74. Sung, H. J., A. Yee, S. G. Eskin, and L. V. McIntire. Cyclic strain and motion control produce opposite oxidative responses in two human endothelial cell types. Am. J. Physiol. Cell Physiol. 293:C87–C94, 2007.

    Article  PubMed  CAS  Google Scholar 

  75. Takano, H., J. Y. Sul, M. L. Mazzanti, R. T. Doyle, P. G. Haydon, and M. D. Porter. Micropatterned substrates: approach to probing intercellular communication pathways. Anal. Chem. 74:4640–4646, 2002.

    Article  PubMed  CAS  Google Scholar 

  76. Tan, J. L., W. Liu, C. M. Nelson, S. Raghavan, and C. S. Chen. Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng. 10:865–872, 2004.

    Article  PubMed  CAS  Google Scholar 

  77. Trkov, S., G. Eng, R. Di Liddo, P. P. Parnigotto, and G. Vunjak-Novakovic. Micropatterned three-dimensional hydrogel system to study human endothelial–mesenchymal stem cell interactions. J. Tissue Eng. Regen. Med. 4:205–215, 2010.

    Article  PubMed  CAS  Google Scholar 

  78. Uttayarat, P., M. Chen, M. Li, F. D. Allen, R. J. Composto, and P. I. Lelkes. Microtopography and flow modulate the direction of endothelial cell migration. Am. J. Physiol. Heart Circ. Physiol. 294:H1027–H1035, 2008.

    Article  PubMed  CAS  Google Scholar 

  79. Uttayarat, P., A. Perets, M. Li, P. Pimton, S. J. Stachelek, I. Alferiev, R. J. Composto, R. J. Levy, and P. I. Lelkes. Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomater. 6:4229–4237, 2010.

    Article  PubMed  CAS  Google Scholar 

  80. Uttayarat, P., G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto. Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions. J. Biomed. Mater. Res. A 75:668–680, 2005.

    PubMed  Google Scholar 

  81. van Kooten, T. G., and A. F. von Recum. Cell adhesion to textured silicone surfaces: the influence of time of adhesion and texture on focal contact and fibronectin fibril formation. Tissue Eng. 5:223–240, 1999.

    Article  PubMed  Google Scholar 

  82. Vartanian, K. B., M. A. Berny, O. J. McCarty, S. R. Hanson, and M. T. Hinds. Cytoskeletal structure regulates endothelial cell immunogenicity independent of fluid shear stress. Am. J. Physiol. Cell Physiol. 298:C333–C341, 2010.

    Article  PubMed  CAS  Google Scholar 

  83. Vartanian, K. B., S. J. Kirkpatrick, S. R. Hanson, and M. T. Hinds. Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces. Biochem. Biophys. Res. Commun. 371:787–792, 2008.

    Article  PubMed  CAS  Google Scholar 

  84. Vartanian, K. B., S. J. Kirkpatrick, O. J. McCarty, T. Q. Vu, S. R. Hanson, and M. T. Hinds. Distinct extracellular matrix microenvironments of progenitor and carotid endothelial cells. J. Biomed. Mater. Res. A 91:528–539, 2009.

    PubMed  Google Scholar 

  85. Wang, Y. C., and C. C. Ho. Micropatterning of proteins and mammalian cells on biomaterials. FASEB J. 18:525–527, 2004.

    PubMed  CAS  Google Scholar 

  86. Woodrow, K. A., M. J. Wood, J. K. Saucier-Sawyer, C. Solbrig, and W. M. Saltzman. Biodegradable meshes printed with extracellular matrix proteins support micropatterned hepatocyte cultures. Tissue Eng. A 15:1169–1179, 2009.

    Article  CAS  Google Scholar 

  87. Wu, C. C., Y. S. Li, J. H. Haga, R. Kaunas, J. J. Chiu, F. C. Su, S. Usami, and S. Chien. Directional shear flow and Rho activation prevent the endothelial cell apoptosis induced by micropatterned anisotropic geometry. Proc. Natl. Acad. Sci. USA 104:1254–1259, 2007.

    Article  PubMed  CAS  Google Scholar 

  88. Xia, N., C. K. Thodeti, T. P. Hunt, Q. Xu, M. Ho, G. M. Whitesides, R. Westervelt, and D. E. Ingber. Directional control of cell motility through focal adhesion positioning and spatial control of Rac activation. FASEB J. 22:1649–1659, 2008.

    Article  PubMed  CAS  Google Scholar 

  89. Xu, T., J. Rohozinski, W. Zhao, E. C. Moorefield, A. Atala, and J. J. Yoo. Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng. A 15:95–101, 2009.

    Article  CAS  Google Scholar 

  90. Xu, F., Y. Sun, Y. Chen, Y. Sun, R. Li, C. Liu, C. Zhang, R. Wang, and Y. Zhang. Endothelial cell apoptosis is responsible for the formation of coronary thrombotic atherosclerotic plaques. Tohoku J. Exp. Med. 218:25–33, 2009.

    Article  PubMed  Google Scholar 

  91. Yoshimoto, K., M. Ichino, and Y. Nagasaki. Inverted pattern formation of cell microarrays on poly(ethylene glycol) (PEG) gel patterned surface and construction of hepatocyte spheroids on unmodified PEG gel microdomains. Lab Chip 9:1286–1289, 2009.

    Article  PubMed  CAS  Google Scholar 

  92. Yung, Y. C., J. Chae, M. J. Buehler, C. P. Hunter, and D. J. Mooney. Cyclic tensile strain triggers a sequence of autocrine and paracrine signaling to regulate angiogenic sprouting in human vascular cells. Proc. Natl. Acad. Sci. USA 106:15279–15284, 2009.

    Article  PubMed  CAS  Google Scholar 

  93. Zinchenko, Y. S., C. R. Culberson, and R. N. Coger. Contribution of non-parenchymal cells to the performance of micropatterned hepatocytes. Tissue Eng. 12:2241–2251, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from the American Heart Association grant 09BGIA2260384 and National Institutes of Health grants R01HL103728 and R01HL 095474.

Conflict of Interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica T. Hinds.

Additional information

Associate Editor Laura Suggs oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, D.E.J., Hinds, M.T. Endothelial Cell Micropatterning: Methods, Effects, and Applications. Ann Biomed Eng 39, 2329–2345 (2011). https://doi.org/10.1007/s10439-011-0352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0352-z

Keywords

Navigation