Skip to main content
Log in

Surfactant Properties Differentially Influence Intravascular Gas Embolism Mechanics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Gas bubble motion in a blood vessel causes temporal and spatial gradients of shear stress at the cell surface lining the vessel wall as the bubble approaches the cell, moves over it and passes it by. Rapid reversals occur in the sign of the shear stress imparted to the cell surface during this motion. These may result in injury to the cell. The presence of a soluble surfactant in the bulk medium reduces the level of the shear stress gradients imparted to the cell surface as compared to an equivalent surfactant-free system and is an important therapeutic aid. This is particularly true for a very small vessel. In this study, we analyze various physical and chemical properties of any given soluble surfactant to ascertain the relative significance of the property of the surfactant on the reduction in the level of the shear stress gradients imparted to the cell surface in such a vessel. While adsorption, desorption, and maximum possible monolayer interface surfactant concentration significantly impact the shear stress levels, physical properties such as the bulk or surface diffusivity do not appear to have large effects. At a given diameter, surfactants with \(k_{\rm a}/(k_{\rm d} d) >{{\mathcal{O}}}(10^{-5})\) and \({\Upgamma_\infty/C_0d}\,>\,9.5 \times 10^{-4}\) are noted to be preferable from the point of view of an increased gap size between the bubble and vessel wall, and a corresponding reduction in the shear stress level imparted to an endothelial cell. The shear stress characteristics of nearly occluding bubbles, in contrast with smaller sized bubbles under identical conditions, are most affected by the introduction of a surfactant in regard to shear stress levels. These observations could form a basis for choosing surfactants in treating gas embolism related illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Ayyaswamy, P. S. Introduction to biofluid mechanics, Chapter 17. In: Fluid Mechanics, edited by P. K. Kundu and I. M. Cohen. Amsterdam, Boston: Academic Press, 2008.

  2. Branger, A. B., and D. M. Eckmann. Theoretical and experimental intravascular gas embolism absorption dynamics. J. Appl. Physiol. 87:1287–1295, 1999.

    CAS  PubMed  Google Scholar 

  3. Branger, A. B., and D. M. Eckmann. Accelerated arteriolar gas embolism reabsorption by an exogenous surfactant. Anesthesiology 96(4):971–979, 2002.

    Article  CAS  PubMed  Google Scholar 

  4. Butler, P. J., T. C. Tsou, J. Y. S. Li, S. Usami, and S. Chien. Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: a role for membrane perturbation in shear-induced mapk activation. Faseb J. 15:216–218, 2001.

    Google Scholar 

  5. Cavanagh, D. P., and D. M. Eckmann. Interfacial dynamics of stationary gas bubbles in flows in inclined tubes. J. Fluid Mech. 398:225–244, 1999.

    Article  Google Scholar 

  6. Cavanagh, D. P., and D. M. Eckmann. The effects of a soluble surfactant on the interfacial dynamics of stationary bubbles in inclined tubes. J. Fluid Mech. 469:369–400, 2002.

    Article  CAS  Google Scholar 

  7. Chang, C.-H., and E. I. Franses. Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloids Surf. A Physicochem. Eng. Aspects 100:1–45, 1995.

    Article  CAS  Google Scholar 

  8. Das, B., P. C. Johnson, and A. S. Popel. Computational fluid dynamic studies of leukocyte adhesion effects on non-Newtonian blood flow through microvessels. Biorheology 37(3):239–258, 2000.

    CAS  PubMed  Google Scholar 

  9. Eckmann, D. M., and D. P. Cavanagh. Bubble detachment by diffusion-controlled surfactant adsorption. Colloids Surf. A Physicochem. Eng. Aspects 227:21–33, 2003.

    Article  CAS  Google Scholar 

  10. Eckmann, D. M., and V. N. Lomivorotov. Microvascular gas embolization clearance following perfluorocarbon administration. J. Appl. Physiol. 94:860–868, 2003.

    CAS  PubMed  Google Scholar 

  11. Eckmann, D. M., S.C. Armstead, and F. Mardini. Surfactant reduces platelet-bubble and platelet-platelet binding induced by in vitro air embolism. Anesthesiology 103:1204–1210, 2005.

    Article  CAS  PubMed  Google Scholar 

  12. Eggleton, C. D., Y. P. Pawar, and K. J. Stebe. Insoluble surfactant on a drop in an extension flow: a generalization of the stagnated surface limit to deformable interfaces. J. Fluid Mech. 385:79–99, 1999.

    Article  CAS  Google Scholar 

  13. Eggleton, C. D., T. M. Tsai, and K. J. Stebe. Tip streaming from a drop in the presence of surfactants. Phys. Rev. Lett. 87(4):Art. No. 048302, 2001.

  14. Ferri, J. K., and K. J. Stebe. Which surfactants reduce surface tension faster? A scaling argument for diffusion-controlled adsorption. Adv. Colloid Interface Sci. 85(1):61–97, 2000.

    Article  CAS  PubMed  Google Scholar 

  15. Fung, Y. C. Biomechanics: Circulation. New York, USA: Springer, 1997.

    Google Scholar 

  16. Ghadiali, S. N., and D. P. Gaver. The influence of non-equilibrium surfactant dynamics on the flow of a semi-infinite bubble in a rigid cylindrical capillary tube. J. Fluid Mech. 478:165–196, 2003.

    Article  Google Scholar 

  17. Hammon, J. W., D. A. Stump, J. B. Butterworth, and D. M. Moody. Approaches to reduce neurologic complications during cardiac surgery. Semin. Thorac. Cardiovasc. Surg. 13(2):184–191, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Huang, H. D., R. D. Kamm, and R. T. Lee. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am .J. Physiol. Cell Physiol. 287:C1–C11, 2004.

    Article  CAS  PubMed  Google Scholar 

  19. Jacqmin, D. Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 55:96, 1999.

    Article  Google Scholar 

  20. James, A. J., and J. Lowengrub. A surfactant-conserving volume-of-fluid method for interfacial flows withinsoluble surfactant. J. Comput. Phys. 201:685–722, 2004.

    Article  CAS  Google Scholar 

  21. Johnson, R. A., and A. Borhan. Pressure-driven motion of surfactant-laden drops through cylindrical capillaries: effect of surfactant solubility. J. Colloid Interface Sci. 261:529–541, 2003.

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi, S., S. D. Crooks, and D. M. Eckmann. Surfactant mitigation of gas bubble contact-induced endothelial cell death. Undersea Hyperb. Med., in press, 2010.

  23. Lampe, J. W., Z. Liao, I. J. Dmochowski, P. S. Ayyaswamy, and D. M. Eckmann. Imaging macromolecular interactions at an interface. Langmuir 26(4):2452–2459, 2010.

    Article  CAS  PubMed  Google Scholar 

  24. Lee, L., and R. Leveque. An immmersed interface method for incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 25:832, 2003.

    Article  Google Scholar 

  25. Levich, V.G. Physicochemical Hydrodynamics. New Jersey: Prentice Hall, 1962.

    Google Scholar 

  26. Li, X. F., and C. Pozrikidis. The effect of surfactant on drop deformation and on the rheology of dilute emulsion in stokes flow. J. Fluid Mech. 341:165–194, 1997.

    Article  CAS  Google Scholar 

  27. McNeil, P. L., and R. A. Steinhardt. Loss, restoration, and maintenance of plasma membrane integrity. J. Cell Biol. 137:1–4, 1997.

    Article  CAS  PubMed  Google Scholar 

  28. Mendelson, H. D. The prediction of bubble terminal velocities from wave theory. AIChE J. 13:250, 1967.

    Article  CAS  Google Scholar 

  29. Mendez, J. L., O. B. Rickman, and R. D. Hubmayr. Plasma membrane stress failure in ventilator-injured lungs—a hypothesis about osmoregulation and the pharmacologic protection of the lungs against deformation. Biol. Neonate 85:290–292, 2004.

    Article  PubMed  Google Scholar 

  30. Milliken, W. J., and L. G. Leal, The influence of surfactant on the deformation and breakup of a viscous drop. J. Colloid Interface Sci. 166:275–285, 1994.

    Article  CAS  Google Scholar 

  31. Morales, D., C. Solans, J. M. Gutirrez, M. J. Garcia-Celma, and U. Olsson. Oil/water droplet formation by temperature change in the water/c16e6/mineral oil system. Langmuir 22(7):3014–3020, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. Mukundakrishnan, K., S. Quan, D. M. Eckmann, and P. S. Ayyaswamy. Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder. Phys. Rev. E, 76:036308(1–15), 2007.

    Article  Google Scholar 

  33. Mukundakrishnan, K., P. S. Ayyaswamy, and D. M. Eckmann. Finite-sized gas bubble motion in a blood vessel: non-newtonian effects. Phys. Rev. E, 78:036303(1–15), 2008.

    Article  Google Scholar 

  34. Mukundakrishnan K., D. M. Eckmann, and P. S. Ayyaswamy. Bubble motion through a generalized power-law fluid flowing in a vertical tube. Ann. NY Acad. Sci. 161:256–267, 2008.

    Google Scholar 

  35. Mukundakrishnan, K., P. S. Ayyaswamy, and D. M. Eckmann. Bubble motion in a blood vessel: shear stress induced endothelial cell injury. J. Biomech. Eng. 131(7):074516, 2009.

    Article  CAS  PubMed  Google Scholar 

  36. Muradoglu, M., and G. Tryggvason. A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227:2238–2262, 2008.

    Article  CAS  Google Scholar 

  37. Oguz, H.N., and S. S. Sadhal. Effects of soluble and insoluble surfactants on the motion of drops. J. Fluid Mech. 194:563–579, 1988.

    Article  CAS  Google Scholar 

  38. Osher, S., and R. Fedkiw. Level set methods: an overview and some recent results. J. Comput. Phys. 169:463, 2001.

    Article  CAS  Google Scholar 

  39. Palaparthi, R., D. T. Papageorgiou, and C. Maldarelli. Theory and experiments on the stagnant cap regime in the motion of spherical surfactant-laden bubbles. J. Fluid Mech. 559:1–44, 2006.

    Article  CAS  Google Scholar 

  40. Papanastasiou, T. C. Flows of materials with yield. J. Rheol. 31(5):385–404, 1987.

    Article  CAS  Google Scholar 

  41. Park, C. W. Influence of soluble surfactant on the motion of a finite bubble in a capillary tube. Phys. Fluids A 4(11):2335–2347, 1992.

    Article  CAS  Google Scholar 

  42. Pugsley, W., L. Klinger, C. Paschalis, T. Treasure, M. Harrison, and S. Newman. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke 25:1393–1399, 1994.

    CAS  PubMed  Google Scholar 

  43. Quan, S., and D. P. Schmidt. A moving mesh interface tracking method for 3d incompressible two-phase flows. J. Comput. Phys. 221:761–780, 2007.

    Article  Google Scholar 

  44. Rodrigue, D., D. De Kee, and C. F. Chan Man Fong. An experimental study of the effect of surfactants on the free rise velocity of gas bubbles. J. Non-Newton. Fluid Mech. 66(3):213–232, 1996.

    Article  CAS  Google Scholar 

  45. Rodrigue, D., D. De Kee, C. F. Chan Man Fong, and J. Yao. The slow motion of a single gas bubble in a non-newtonian fluid containing surfactants. J. Non-Newton. Fluid Mech. 86:211–227, 1999.

    Article  CAS  Google Scholar 

  46. Sadhal, S. S., P. S. Ayyaswamy, and J. N. Chung. Transport Phenomena with Drops and Bubbles. New York, USA: Springer, 1997.

    Google Scholar 

  47. Scardovelli, R., and S. Zaleski. Direct numerical simulation of free surface and interfacial flow. Annu. Rev. Fluid Mech. 31:576, 1999.

    Article  Google Scholar 

  48. Sharan, M., and A. S. Popel. A two-phase model for blood flow in narrow tubes with increased viscosity near the wall. Biorheology 38:415–428, 2001.

    CAS  PubMed  Google Scholar 

  49. Shin, S., and D. Juric. Modeling three-dimensional multiphase flow using a level contour reconstructionmethod for front tracking without connectivity. J. Comput. Phys. 180:427–470, 2002.

    Article  CAS  Google Scholar 

  50. Stigter, D., and K. J. Mysels. Tracer electrophoresis. ii. the mobility of the micelle of sodium lauryl sulfate and its interpretation in terms of zeta potential and charge. J. Phys. Chem. 59(1):4551, 1955.

    Article  Google Scholar 

  51. Stone, H. A. A simple derivation of the time-dependent convective-diffusive equation for surfactant transport along a deforming interface. Phys. Fluids A 2:111–112, 1990

    Article  CAS  Google Scholar 

  52. Sussman, M., and E. G. Puckett. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2):301–337, 2000.

    Article  CAS  Google Scholar 

  53. Sussman, M., A. S. Almgren, J. B. Bell, P. Colella, L. Howell, and M. Welcome. An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 148:81, 1999.

    Article  Google Scholar 

  54. Suzuki, A., S. C. Armstead, and D. M. Eckmann. Surfactant reduction in embolism bubble adhesion and endothelial damage. Anesthesiology 101:97–103, 2004.

    Article  PubMed  Google Scholar 

  55. Swaminathan, T. N., K. Mukundakrishnan, P. S. Ayyaswamy, and D. M. Eckmann. Effect of a soluble surfactant on a finite sized bubble motion in a blood vessel. J. Fluid Mech. 642:509–539, 2010.

    Article  CAS  PubMed  Google Scholar 

  56. Torres, D. J., and J. U. Brackbill. The point-set method: front tracking without connectivity. J. Comput. Phys. 165:620, 2000.

    Article  CAS  Google Scholar 

  57. Tsai, T. M., and M. J. Miksis. Dynamics of a drop in a constricted capillary tube. J. Fluid Mech. 274:197–217, 1994.

    Article  Google Scholar 

  58. Udaykumar, H. S., L. Tran, D. M. Belk, and K. J. Vanden. An eulerian method for computation of multimaterial impact with ENO shock-capturingand sharp interfaces. J. Comput. Phys. 186:136–177, 2003.

    Article  Google Scholar 

  59. Unverdi, S. O., and G. Tryggvason. A front-tracking method for viscous incompressible, multi-fluid flows. J. Comput. Phys. 100(1):25–37, 1992.

    Article  Google Scholar 

  60. Vlahakis, N. E., and R. D. Hubmayr. Invited review:plasma membrane stress failure in alveolar epithelial cells. J. Appl. Physiol. 89:2490–2496, 2000.

    CAS  PubMed  Google Scholar 

  61. Yon, S., and C. Pozrikidis. A finite volume/boundary-element method for flow past interfaces in the presence of surfactants, with application to shear flow past a viscous drop. Comput. Fluids 27:879–902, 1998.

    Article  CAS  Google Scholar 

  62. Zhang, J., D. M. Eckmann, and P. S. Ayyaswamy. A front tracking method for a deformable intravascular bubble in a tube with soluble surfactant transport. J. Comput. Phys. 214:366–396, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Office of Naval Research Grant No. N00014-08-1-0436 and NIH Grant No. R01-HL067986.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Ayyaswamy.

Additional information

Associate Editor Stefan Jockenhoevel oversaw the review of this article.

Appendix A: Validation

Appendix A: Validation

In addition to the validation of the numerical scheme done previously, in this appendix, we compare the rise velocity of an air bubble in human blood plasma by performing experiments and numerical calculations. The bubble motion and bubble shape cannot be visualized adequately using whole blood. Thus, we examine terminal bubble rise velocity using freshly prepared human blood plasma. Following an approved Institutional Review Board protocol, whole blood was obtained by venipuncture from healthy adult volunteer donors. Samples were immediately citrated (9 parts blood to 1 part citrate) and spun in a Sorvall Super T21 centrifuge (Thermo Electron Corporation, Asheville, NC, USA) at 2600 rpm (1500 g) for 15 min to obtain platelet poor plasma.11 Plasma was used to fill a 180-cm length of TYGON® R-3603 AAC00003 tubing (Saint-Gobain Performance Plastics Akron, OH, USA) having an inner diameter of 1.5875 mm. The tubing, which was affixed taughtly alongside a ruler onto a vertical frame, was open to atmosphere on top and closed via a blunt-tip connector attached to a three-way stopcock on the bottom. Bubbles were introduced into the liquid by slow injection using a microsyringe (Hamilton Company, Reno, NV, USA) and allowed to rise freely under buoyancy.

Bubbles were viewed in the upper-most (last) 20 cm of tubing using a video imaging system consisting of a high resolution black and white video camera (JE12HMV, Javelin Systems, Torrance, CA), a video image marker-measurement system (Model VIA-170, Boeckeler Instruments, Tucson, AZ, USA), monitor (Model PVM-1343MD, Sony, Tokyo, Japan), and video cassette recorder (Sony SVO-9500 MD S-VHS, Sony Corporation, Tokyo, Japan) operating at a standard 30 frames per second.3,5,6,9,10 Post-experiment measurements of bubble dimensions and terminal rise velocity were made by reviewing the videotape calibrated for distance with the ruler included in the video image and by counting the number of video frames elapsed for a minimum vertical bubble displacement of 20 mm.

A comparison of the rise velocity of bubble under identical conditions is shown in Fig. 16. The diameter of the bubble (d bubble) has been normalized with the diameter of the tube (d tube) and the velocity has been normalized with the Mendelsen equation28 \(\sqrt{2\sigma/\rho_{\rm l}d_{\rm tube}+g d_{\rm tube}/2}.\) For the numerical simulation, the evaluation of surface tension in Lampe et al.,23 gives the value of σ for the air–plasma interface as ∼54 mN/m. The viscosity of plasma is obtained from Sharan and Popel48 as 1.2 cP. The predicted numerical results are compared with our experimental values. It can be seen that the two results agree well (<15% error), noting that our experiments are carried out in a very long open tube. This comparison thus serves to additionally validate our numerical procedure.

Figure 16
figure 16

Comparison of the numerical results of the rise of an air bubble in a tube containing human blood plasma with that of our experimental results. Here, d tube = 1.5875 mm is the tube diameter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaminathan, T.N., Ayyaswamy, P.S. & Eckmann, D.M. Surfactant Properties Differentially Influence Intravascular Gas Embolism Mechanics. Ann Biomed Eng 38, 3649–3663 (2010). https://doi.org/10.1007/s10439-010-0120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0120-5

Keywords

Navigation