Skip to main content

Advertisement

Log in

Comparison of Three Kinds of Electrode–Skin Interfaces for Electrical Impedance Scanning

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Low, uniform, and stable electrode–skin impedance is required to achieve good performance of the electrode–skin interface for electrical impedance scanning (EIS) examination. This can be used to measure the real impedance distribution of breast tissue beneath the skin. In this study, the gel interface, the cotton fine grid thin layer (CFGTL) interface, and the hydrogel interface were compared. Experiments were conducted to assess the influence of each interface on the multi-frequency EIS data and their capacity to retain moisture. Results showed that the CFGTL and hydrogel interfaces decreased contact impedance and made the impedance between the electrodes and the breast skin more even and stable. The Cole–Cole model was also used to fit the multi-frequency EIS data. The results demonstrated that the CFGTL and hydrogel interfaces were advantageous for measuring the impedance of the breast tissue under the gel interface. In general, the CFGTL and hydrogel interfaces had good contact with the skin, and both interfaces were proper choices for EIS examination at present. The hydrogel interface was a better choice for our new EIS system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Boone, K. G., and D. S. Holder. Effect of skin impedance on image quality and variability in electrical impedance tomography: a model study. Med. Biol. Eng. Comput. 34:351–354, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Brandstatter, B., K. Hollaus, H. Hutten, M. Mayer, R. Merwa, and H. Scharfetter. Direct estimation of Cole parameters in multifrequency EIT using a regularized Gauss–Newton method. Physiol. Meas. 24:437–448, 2003.

    Article  PubMed  Google Scholar 

  3. Calderwood, J. H. Electrode–skin impedance from a dielectric viewpoint. Physiol. Meas. 17:A131–A139, 1996.

    Article  PubMed  Google Scholar 

  4. Cornish, B. H., and L. C. Ward. Data analysis in multiple-frequency bioelectrical impedance analysis. Physiol. Meas. 19:275–283, 1998.

    Article  PubMed  CAS  Google Scholar 

  5. Diebold, T., V. Jacobi, B. Scholz, C. Hensel, C. Solbach, M. Kaufmann, F. Viana, J. Balzer, J. Peters, and T. Vogl. Value of electrical impedance scanning (EIS) in the evaluation of BI-RADS™ III/IV/V-lesions. Technol. Cancer Res. Treat. 4:1–5, 2005.

    Google Scholar 

  6. Fuchsjaeger, M. H., D. Flory, C. S. Reiner, M. Rudas, C. C. Riedl, and T. H. Helbich. The negative predictive value of electrical impedance scanning in BI-RADS category iv breast lesions. Invest. Radiol. 40:478–485, 2005.

    Article  PubMed  Google Scholar 

  7. Gilad, O., L. Horesh, and D. S. Holder. Design of electrodes and current limits for low-frequency electrical impedance tomography of the brain. Med. Biol. Eng. Comput. 45:621–633, 2007.

    Article  PubMed  CAS  Google Scholar 

  8. Glickman, Y. A., O. Filo, U. Nachaliel, S. Lenington, S. Amin-Spector, and R. Ginor. Novel EIS postprocessing algorithm for breast cancer diagnosis. IEEE Trans. Med. Imaging 21:710–712, 2002.

    Article  PubMed  Google Scholar 

  9. Huigen, E., A. Peper, and C. A. Grimbergen. Investigation into the origin of the noise of surface electrodes. Med. Biol. Eng. Comput. 40:332–338, 2002.

    Article  PubMed  CAS  Google Scholar 

  10. Ji, Z., X. Dong, R. Liu, K. Wang, X. Shi, F. Fu, and F. You. Improvement in EIS diagnosis accuracy using a multi-frequency parameter analysis method: preliminary results. Physiol. Meas. 29:1221–1231, 2008.

    Article  Google Scholar 

  11. Ji, Z., X. Dong, X. Shi, F. You, F. Fu, and R. Liu. Novel electrode–skin interface for breast electrical impedance scanning. Med. Biol. Eng. Comput. 47:1045–1052, 2009.

    Article  PubMed  Google Scholar 

  12. Ji, Z., X. Dong, X. Shi, R. Liu, F. Fu, and F. You. Study of electrical impedance scanning system for breast screening. In: Proceedings of First International Conference on Bioinformatics and Biomedical Engineering, Wuhan, 2007, pp. 1114–1116.

  13. Kim, B. S., D. Isaacson, H. Xia, T.-J. Kao, J. C. Newell, and G. J. Saulnier. A method for analyzing electrical impedance spectroscopy data from breast cancer patients. Physiol. Meas. 28:S237–S246, 2007.

  14. Liu, R., X. Dong, F. Fu, F. You, X. Shi, Z. Ji, and K. Wang. Multi-frequency parameter mapping of electrical impedance scanning using two kinds of circuit model. Physiol. Meas. 28:S85–S100, 2007.

    Article  PubMed  Google Scholar 

  15. Liu, R., X. Dong, F. Fu, X. Shi, F. You, and Z. Ji. Primary multi-frequency data analyze in electrical impedance scanning. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2:1504–1507, 2005.

    PubMed  Google Scholar 

  16. Malich, A., T. Bohm, M. Facius, I. Kleinteich, M. Fleck, R. Anderson, and W. A. Kaiser. Electrical impedance scanning as a new imaging modality in breast cancer detection—a short review of clinical value on breast application, limitations and perspectives. Nucl. Instrum. Methods Phys. Res. A 497:75–81, 2003.

    Article  CAS  Google Scholar 

  17. Malich, A., T. Bohm, M. Facius, M. Freessmeyer, M. Fleck, R. Anderson, and W. A. Kaiser. Additional value of electrical impedance scanning: experience of 240 histologically-proven breast lesions. Eur. J. Cancer 37:2324–2330, 2001.

    Article  PubMed  CAS  Google Scholar 

  18. Malich, A., T. Bohm, M. Facius, M. Freessmeyer, M. Fleck, R. Anderson, and W. A. Kaiser. Differentiation of mammographically suspicious lesions: evaluation of breast ultrasound, MRI mammography and electrical impedance scanning as adjunctive technologies in breast cancer detection. Clin. Radiol. 56:278–283, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. Malich, A., T. Fritsch, R. Anderson, T. Boehm, M. G. Freesmeyer, M. Fleck, and W. A. Kaiser. Electrical impedance scanning for classifying suspicious breast lesions: first results. Eur. Radiol. 10:1555–1561, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Martín, G., R. Martín, M. J. Brieva, and L. Santamaría. Electrical impedance scanning in breast cancer imaging: correlation with mammographic and histologic diagnosis. Eur. Radiol. 12:1471–1478, 2002.

    Article  PubMed  Google Scholar 

  21. McAdams, E. T., J. Jossinet, A. Lackermeier, and F. Risacher. Factors affecting electrode-gel-skin interface impedance in electrical impedance tomography. Med. Biol. Eng. Comput. 34:397–408, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Mentzel, H., A. Malich, K. Kentouche, M. Freesmeyer, J. Bottcher, G. Schneider, B. Gruhn, S. Vogt, F. Zintl, R. Anderson, and W. A. Kaiser. Electrical impedance scanning—application of this new technique for lymph node evaluation in children. Pediatr. Radiol. 33:461–466, 2003.

    Article  PubMed  Google Scholar 

  23. Perlet, C., M. Kessler, S. Lenington, H. Sittek, and M. Reiser. Electrical impedance measurement of the breast: effect of hormonal changes associated with the menstrual cycle. Eur. Radiol. 10:1550–1554, 2000.

    Article  PubMed  CAS  Google Scholar 

  24. Poplack, S. P., T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen. Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms. Radiology 243:350–359, 2007.

    Article  PubMed  Google Scholar 

  25. Puurtinen, M., S. K. Kauppien, J. Malmivuo, and J. Hyttinen. Measurement of noise and impedance of dry and wet textile electrodes and textile electrodes with hydrogel. In: Proceedings of the 28th IEEE EMBS, Vol. 30, 2006, pp. 6012–6015.

  26. Searle, A., and L. Kirkup. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol. Meas. 21:271–283, 2000.

    Article  PubMed  CAS  Google Scholar 

  27. Stojadinovic, A., A. Nissan, Z. Gallimidi, S. Lenington, W. Logan, M. Zuley, A. Yeshaya, M. Shimonov, M. Melloul, S. Fields, T. Allweis, R. Ginor, D. Gur, and C. D. Shriver. Electrical impedance scanning for the early detection of breast cancer in young women: preliminary results of a multicenter prospective clinical trial. J. Clin. Oncol. 23:2703–2715, 2005.

    Article  PubMed  Google Scholar 

  28. Stojadinovic, A., L. R. Henry, G. E. Peoples, E. A. Mittendorf, S. Lenington, A. Nissan, and C. D. Shriver. Satisfaction with breast cancer screening and future screening participation. Med. Sci. Monit. 13:422–429, 2007.

    Google Scholar 

  29. Stojadinovic, A., O. Moskovitz, Z. Gallimidi, S. Fields, A. D. Brooks, R. Brem, R. N. Mucciola, M. Singh, M. Maniscalco-Theberge, H. E. Rockette, D. Gur, and C. D. Shriver. Prospective study of electrical impedance scanning for identifying young women at risk for breast cancer. Breast Cancer Res. Treat. 97:179–189, 2006.

    Article  PubMed  Google Scholar 

  30. Wang, T., K. Wang, Q. Yao, J.-H. Chen, R. Ling, J.-L. Zhang, X.-Z. Dong, F. Fu, K.-F. Dou, and L. Wang. Prospective study on combination of electrical impedance scanning and ultrasound in estimating risk of development of breast cancer in young women. Cancer Invest. 28:295–303, 2010.

    Article  PubMed  Google Scholar 

  31. Ward, L., B. H. Cornish, N. I. Paton, and B. J. Thomas. Multiple frequency bioelectrical impedance analysis: a cross-validation study of the inductor circuit and Cole models. Physiol. Meas. 20:333–347, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Waterworth, A. R., P. Milnes, R. H. Smallwood, and B. H. Brown. Cole equation modelling to measurements made using an impulse driven transfer impedance system. Physiol. Meas. 21:137–144, 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported partially by the National Natural Science Foundation of the People’s Republic of China under Grants 50337020 and 50937005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuzhen Dong.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Yinsuo Yin and Zhenyu Ji contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Ji, Z., Zhang, W. et al. Comparison of Three Kinds of Electrode–Skin Interfaces for Electrical Impedance Scanning. Ann Biomed Eng 38, 2032–2039 (2010). https://doi.org/10.1007/s10439-010-0053-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0053-z

Keywords

Navigation