Skip to main content
Log in

Soft ionic-hydrogel electrodes for electroencephalography signal recording

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Wet gel electrodes have been widely used for electroencephalography (EEG) signal recording, which generally causes skin abrasion and longer preparation time. In this paper, we present soft ionic-hydrogel based electrodes to overcome such drawbacks. In order to conveniently measure the EEG signals, we design the claw-like and patch-like structures for robust connection between metal (Ag/AgCl) electrodes and skin scalps. Next, we experimentally show that the soft ionic-hydrogel based electrodes have similar performance with the conventional wet gel electrodes in terms of the short-circuit noise, electrical impedance, and skin-electrode contact impedance on unprepared human skin, significantly better than dry electrodes and water-based electrodes. We further perform the EEG measurements and steady-state visual evoked potentials (SSVEP) experiments with five subjects to verify the effectiveness of the soft ionic-hydrogel based electrodes. The experimental results demonstrate that our developed soft ionic-hydrogel electrodes can record high-quality EEG signals in a fast and clean way, being a compelling option for EEG-based brain-computer interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michel C M, Murray M M. Towards the utilization of EEG as a brain imaging tool. Neuro Image, 2012, 61: 371–385

    Google Scholar 

  2. Iturrate I, Antelis J M, Kubler A, et al. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans Robot, 2009, 25: 614–627

    Article  Google Scholar 

  3. Hwang H J, Lim J H, Jung Y J, et al. Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard. J Neuro Sci Methods, 2012, 208: 59–65

    Article  Google Scholar 

  4. Meng J, Zhang S, Bekyo A, et al. Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Sci Rep, 2016, 6: 38565

    Article  Google Scholar 

  5. Ang K K, Chua K S G, Phua K S, et al. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin EEG Neurosci, 2015, 46: 310–320

    Article  Google Scholar 

  6. Alonso-Valerdi L M, Salido-Ruiz R A, Ramirez-Mendoza R A. Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits. Neuropsychologia, 2015, 79: 354–363

    Article  Google Scholar 

  7. Al-qaysi Z T, Zaidan B B, Zaidan A A, et al. A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations. Comput Methods Programs Biomed, 2018, 164: 221–237

    Article  Google Scholar 

  8. Li G, Wang S, Duan Y Y. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sens Actuat B-Chem, 2018, 277: 250–260

    Article  Google Scholar 

  9. Kaitainen S, Kutvonen A, Suvanto M, et al. Liquid silicone rubber (LSR)-based dry bioelectrodes: The effect of surface micropillar structuring and silver coating on contact impedance. Sens Actuat A-Phys, 2014, 206: 22–29

    Article  Google Scholar 

  10. Son Y J, Worth Longest P, Hindle M. Aerosolization characteristics of dry powder inhaler formulations for the excipient enhanced growth (EEG) application: Effect of spray drying process conditions on aerosol performance. Int J Pharm, 2013, 443: 137–145

    Article  Google Scholar 

  11. Fiedler P, Muhle R, Griebel S, et al. Contact pressure and flexibility of multipin dry EEG electrodes. IEEE Trans Neural Syst Rehabil Eng, 2018, 26: 750–757

    Article  Google Scholar 

  12. Chen Y H, de Beeck M, Vanderheyden L, et al. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording. Sensors, 2014, 14: 23758–23780

    Article  Google Scholar 

  13. Volosyak I, Valbuena D, Malechka T, et al. Brain-computer interface using water-based electrodes. J Neural Eng, 2010, 7: 066007

    Article  Google Scholar 

  14. Gao K P, Yang H J, Liao L L, et al. A novel bristle-shaped semi-dry electrode with low contact impedance and ease of use features for EEG signal measurements. IEEE Trans Biomed Eng, 2020, 67: 750–761

    Article  Google Scholar 

  15. Mathewson K E, Harrison T J L, Kizuk S A D. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Psychophysiology, 2017, 54: 74–82

    Article  Google Scholar 

  16. Huang S, Liu Y, Zhao Y, et al. Flexible electronics: Stretchable electrodes and their future. Adv Funct Mater, 2019, 29: 1805924

    Article  Google Scholar 

  17. Huang Y A, Dong W, Zhu C, et al. Electromechanical design of self-similar inspired surface electrodes for human-machine interaction. Complexity, 2018, 2018: 1–14

    Google Scholar 

  18. Guiseppi-Elie A. Electroconductive hydrogels: Synthesis, characterization and biomedical applications. Biomaterials, 2010, 31: 2701–2716

    Article  Google Scholar 

  19. Lu B, Yuk H, Lin S, et al. Pure PEDOT:PSS hydrogels. Nat Commun, 2019, 10: 1043

    Article  Google Scholar 

  20. Alba N A, Sclabassi R J, Sun M, et al. Novel hydrogel-based preparation-free EEG electrode. IEEE Trans Neural Syst Rehabil Eng, 2010, 18: 415–423

    Article  Google Scholar 

  21. Lepola P, Myllymaa S, Töyräs J, et al. Screen-printed EEG electrode set for emergency use. Sens Actuat A-Phys, 2014, 213: 19–26

    Article  Google Scholar 

  22. Fernandes M S, Dias N S, Silva A F, et al. Hydrogel-based photonic sensor for a biopotential wearable recording system. Biosens Bioelectron, 2010, 26: 80–86

    Article  Google Scholar 

  23. Pedrosa P, Fiedler P, Schinaia L, et al. Alginate-based hydrogels as an alternative to electrolytic gels for rapid EEG monitoring and easy cleaning procedures. Sens Actuat B-Chem, 2017, 247: 273–283

    Article  Google Scholar 

  24. Gu G, Xu H, Peng S, et al. Integrated soft ionotronic skin with stretchable and transparent hydrogel-elastomer ionic sensors for handmotion monitoring. Soft Robotics, 2019, 6: 368–376

    Article  Google Scholar 

  25. Romo Vázquez R, Vélez-Pérez H, Ranta R, et al. Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling. BioMed Signal Processing Control, 2012, 7: 389–400

    Article  Google Scholar 

  26. Li G, Wang S, Duan Y Y. Towards gel-free electrodes: A systematic study of electrode-skin impedance. Sens Actuat B-Chem, 2017, 241: 1244–1255

    Article  Google Scholar 

  27. Park Y G, Choi J, Lee C, et al. Heterogeneity of tremor mechanisms assessed by tremor-related cortical potential in mice. Mol Brain, 2015, 8: 3

    Article  Google Scholar 

  28. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res Rev, 1999, 29: 169–195

    Article  Google Scholar 

  29. Bin G, Gao X, Yan Z, et al. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J Neural Eng, 2009, 6: 046002

    Article  Google Scholar 

  30. Ferree T C, Luu P, Russell G S, et al. Scalp electrode impedance, infection risk, and EEG data quality. Clin Neurophysiol, 2001, 112: 536–544

    Article  Google Scholar 

  31. Bai Y, Chen B, Xiang F, et al. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl Phys Lett, 2014, 105: 151903

    Article  Google Scholar 

  32. Löfhede J, Seoane F, Thordstein M. Textile electrodes for EEG re-cording—A pilot study. Sensors, 2012, 12: 16907–16919

    Article  Google Scholar 

  33. Lopez-Gordo M, Sanchez-Morillo D, Valle F. Dry EEG electrodes. Sensors, 2014, 14: 12847–12870

    Article  Google Scholar 

  34. Von Rosenberg W, Chanwimalueang T, Goverdovsky V, et al. Smart helmet: Wearable multichannel ECG and EEG. IEEE J Transl Eng Health Med, 2016, 4: 1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinJun Sheng.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2018YFB1307200), the National Natural Science Foundation of China (Grant Nos. 91948302, and 51905339), and the Science and Technology Commission of Shanghai Municipality (Grant No. 18JC1410400).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, X., Qin, Z., Xu, H. et al. Soft ionic-hydrogel electrodes for electroencephalography signal recording. Sci. China Technol. Sci. 64, 273–282 (2021). https://doi.org/10.1007/s11431-020-1644-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1644-6

Keywords

Navigation