Skip to main content

Advertisement

Log in

Bioactive Stratified Polymer Ceramic-Hydrogel Scaffold for Integrative Osteochondral Repair

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Due to the intrinsically poor repair potential of articular cartilage, injuries to this soft tissue do not heal and require clinical intervention. Tissue engineered osteochondral grafts offer a promising alternative for cartilage repair. The functionality and integration potential of these grafts can be further improved by the regeneration of a stable calcified cartilage interface. This study focuses on the design and optimization of a stratified osteochondral graft with biomimetic multi-tissue regions, including a pre-designed and pre-integrated interface region. Specifically, the scaffold based on agarose hydrogel and composite microspheres of polylactide-co-glycolide (PLGA) and 45S5 bioactive glass (BG) was fabricated and optimized for chondrocyte density and microsphere composition. It was observed that the stratified scaffold supported the region-specific co-culture of chondrocytes and osteoblasts which can lead to the production of three distinct yet continuous regions of cartilage, calcified cartilage and bone-like matrices. Moreover, higher cell density enhanced chondrogenesis and improved graft mechanical property over time. The PLGA-BG phase promoted chondrocyte mineralization potential and is required for the formation of a calcified interface and bone regions on the osteochondral graft. These results demonstrate the potential of the stratified scaffold for integrative cartilage repair and future studies will focus on scaffold optimization and in vivo evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ahsan, T., L. M. Lottman, F. Harwood, D. Amiel, and R. L. Sah. Integrative cartilage repair: inhibition by beta-aminopropionitrile. J. Orthop. Res. 17:850–857, 1999.

    Article  PubMed  CAS  Google Scholar 

  2. Akizuki, S., Y. Yasukawa, and T. Takizawa. A new method of hemostasis for cementless total knee arthroplasty. Bull. Hosp. Jt. Dis. 56:222–224, 1997.

    PubMed  CAS  Google Scholar 

  3. Alhadlaq, A., and J. J. Mao. Tissue-engineered neogenesis of human-shaped mandibular condyle from rat mesenchymal stem cells. J. Dent. Res. 82:951–956, 2003.

    Article  PubMed  CAS  Google Scholar 

  4. Alhadlaq, A., and J. J. Mao. Tissue-engineered osteochondral constructs in the shape of an articular condyle. J. Bone Joint Surg. Am. 87:936–944, 2005.

    Article  PubMed  Google Scholar 

  5. Allan, K. S., R. M. Pilliar, J. Wang, M. D. Grynpas, and R. A. Kandel. Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng. 13:167–177, 2007.

    Article  PubMed  CAS  Google Scholar 

  6. Angele, P., R. Kujat, M. Nerlich, J. Yoo, V. Goldberg, and B. Johnstone. Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng. 5:545–554, 1999.

    Article  PubMed  CAS  Google Scholar 

  7. Athanasiou, K. A., M. P. Rosenwasser, J. A. Buckwalter, T. I. Malinin, and V. C. Mow. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res. 9:330–340, 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Beiser, I. H., and I. O. Kanat. Subchondral bone drilling: a treatment for cartilage defects. J. Foot Surg. 29:595–601, 1990.

    PubMed  CAS  Google Scholar 

  9. Benya, P. D., and J. D. Shaffer. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224, 1982.

    Article  PubMed  CAS  Google Scholar 

  10. Boccaccini, A. R., and J. J. Blaker. Bioactive composite materials for tissue engineering scaffolds. Expert Rev. Med. Devices 2:303–317, 2005.

    Article  PubMed  CAS  Google Scholar 

  11. Bullough, P. G. The geometry of diarthrodial joints, its physiologic maintenance, and the possible significance of age-related changes in geometry-to-load distribution and the development of osteoarthritis. Clin. Orthop. Relat Res. 61–66, 1981.

  12. Bullough, P. G. The role of joint architecture in the etiology of arthritis. Osteoarthr. Cartil. 12(Suppl A):S2–S9, 2004.

    Article  PubMed  Google Scholar 

  13. Bullough, P. G., and A. Jagannath. The morphology of the calcification front in articular cartilage. Its significance in joint function. J. Bone Joint Surg. Br. 65:72–78, 1983.

    PubMed  CAS  Google Scholar 

  14. Burr, D. B. Anatomy and physiology of the mineralized tissues: Role in the pathogenesis of osteoarthrosis. Osteoarthr. Cartil. 12(Suppl A):S20–S30, 2004.

    Article  PubMed  Google Scholar 

  15. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, and E. B. Hunziker. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108(Pt 4):1497–1508, 1995.

    PubMed  CAS  Google Scholar 

  16. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, J. H. Kimura, and E. B. Hunziker. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10:745–758, 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Cao, T., K. H. Ho, and S. H. Teoh. Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng. 9(Suppl 1):S103–S112, 2003.

    Article  PubMed  CAS  Google Scholar 

  18. Chowdhury, T. T., D. L. Bader, and D. A. Lee. Dynamic compression counteracts il-1 beta-induced release of nitric oxide and pge2 by superficial zone chondrocytes cultured in agarose constructs. Osteoarthr. Cartil. 11:688–696, 2003.

    Article  PubMed  CAS  Google Scholar 

  19. Collins, D. H. The Pathology of Articular and Spinal Diseases. Baltimore, MD: William & Wilkins, 1950.

    Google Scholar 

  20. D’Lima, D. D., S. Hashimoto, P. C. Chen, C. W. Colwell, Jr., and M. K. Lotz. Impact of mechanical trauma on matrix and cells. Clin. Orthop. Relat Res. S90–S99, 2001.

  21. Elisseeff, J., C. Puleo, F. Yang, and B. Sharma. Advances in skeletal tissue engineering with hydrogels. Orthod. Craniofac. Res. 8:150–161, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Fawns, H. T., and J. W. Landells. Histochemical studies of rheumatic conditions. I. Observations on the fine structures of the matrix of normal bone and cartilage. Ann. Rheum. Dis. 12:105–113, 1953.

    Article  PubMed  CAS  Google Scholar 

  23. Frenkel, S. R., G. Bradica, J. H. Brekke, S. M. Goldman, K. Ieska, P. Issack, M. R. Bong, H. Tian, J. Gokhale, R. D. Coutts, and R. T. Kronengold. Regeneration of articular cartilage-evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthr. Cartil. 13:798–807, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Gao, J., J. E. Dennis, L. A. Solchaga, A. S. Awadallah, V. M. Goldberg, and A. I. Caplan. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng. 7:363–371, 2001.

    Article  PubMed  CAS  Google Scholar 

  25. Gao, J., J. E. Dennis, L. A. Solchaga, V. M. Goldberg, and A. I. Caplan. Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng. 8:827–837, 2002.

    Article  PubMed  CAS  Google Scholar 

  26. Hangody, L., G. Kish, Z. Karpati, I. Szerb, and I. Udvarhelyi. Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg. Sports Traumatol. Arthrosc. 5:262–267, 1997.

    Article  PubMed  CAS  Google Scholar 

  27. Harley, B. A., A. K. Lynn, Z. Wissner-Gross, W. Bonfield, I. V. Yannas, and L. J. Gibson. Design of a multiphase osteochondral scaffold iii: fabrication of layered scaffolds with continuous interfaces. J. Biomed. Mater. Res. A 92:1078–1093.

  28. Harper, M. C. Viscous isoamyl 2-cyanoacrylate as an osseous adhesive in the repair of osteochondral osteotomies in rabbits. J. Orthop. Res. 6:287–292, 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Havelka, S., V. Horn, D. Spohrova, and P. Valouch. The calcified-noncalcified cartilage interface: the tidemark. Acta Biol. Hung. 35:271–279, 1984.

    PubMed  CAS  Google Scholar 

  30. Haynes, D. W. The mineralization front of articular cartilage. Metab. Bone Dis. Rel. Res. 2(suppl):55–59, 1980.

    Google Scholar 

  31. Hench, L. L. Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74(7):1487–1510, 1991.

    Article  CAS  Google Scholar 

  32. Hench, L. L., and J. M. Polak. Third-generation biomedical materials. Science 295:1014–1017, 2002.

    Article  PubMed  CAS  Google Scholar 

  33. Holland, T. A., E. W. Bodde, L. S. Baggett, Y. Tabata, A. G. Mikos, and J. A. Jansen. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J. Biomed. Mater. Res. A 75:156–167, 2005.

    PubMed  Google Scholar 

  34. Hung, C. T., E. G. Lima, R. L. Mauck, E. Taki, M. A. LeRoux, H. H. Lu, R. G. Stark, X. E. Guo, and G. A. Ateshian. Anatomically shaped osteochondral constructs for articular cartilage repair. J. Biomech. 36:1853–1864, 2003.

    Article  PubMed  Google Scholar 

  35. Hunziker, E. B., and I. M. Driesang. Functional barrier principle for growth-factor-based articular cartilage repair. Osteoarthr. Cartil. 11:320–327, 2003.

    Article  PubMed  CAS  Google Scholar 

  36. Hunziker, E. B., I. M. Driesang, and C. Saager. Structural barrier principle for growth factor-based articular cartilage repair. Clin. Orthop. Relat. Res. S182–S189, 2001.

  37. Jackson, D. W., M. J. Scheer, and T. M. Simon. Cartilage substitutes: overview of basic science and treatment options. J. Am. Acad. Orthop. Surg. 9:37–52, 2001.

    PubMed  CAS  Google Scholar 

  38. Jiang, J., S. B. Nicoll, and H. H. Lu. Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem. Biophys. Res. Commun. 338:762–770, 2005.

    Article  PubMed  CAS  Google Scholar 

  39. Kandel, R. A., M. Grynpas, R. Pilliar, J. Lee, J. Wang, S. Waldman, P. Zalzal, and M. Hurtig. Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model. Biomaterials 27:4120–4131, 2006.

    Article  PubMed  CAS  Google Scholar 

  40. Khanarian, N. T., S. A. McArdle, and H. H. Lu. Effects of 45s5 bioactive glass particles on chondrocyte biosynthesis and mineralization. Society for Biomaterials Proceedings, 2009.

  41. Kim, Y. J., R. L. Sah, J. Y. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using hoechst 33258. Anal. Biochem. 174:168–176, 1988.

    Article  PubMed  CAS  Google Scholar 

  42. Lane, L. B., and P. G. Bullough. Age-related changes in the thickness of the calcified zone and the number of tidemarks in adult human articular cartilage. J. Bone Jt. Surg. Br. 62:372–375, 1980.

    CAS  Google Scholar 

  43. Lemperg, R. The subchondral bone plate of the femoral head in adult rabbits. I. Spontaneus remodelling studied by microradiography and tetracycline labelling. Virchows Arch. A Pathol. Pathol. Anat. 352:1–13, 1971.

    Article  PubMed  CAS  Google Scholar 

  44. Lethbridge-Cejku, M., J. S. Schiller, and L. Bernadel. Summary health statistics for U.S. adults: National Health Interview Survey, 2002. Vital Health Stat. 10.222:1–151, 2004.

  45. Lima, E. G., L. Bian, K. W. Ng, R. L. Mauck, B. A. Byers, R. S. Tuan, G. A. Ateshian, and C. T. Hung. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with tgf-beta3. Osteoarthr. Cartil. 15:1025–1033, 2007.

    Article  PubMed  CAS  Google Scholar 

  46. Lu, H. H., S. F. El Amin, K. D. Scott, and C. T. Laurencin. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J. Biomed. Mater. Res. 64A:465–474, 2003.

    Article  CAS  Google Scholar 

  47. Lu, H. H., J. M. Vo, J. Lin, S. Shin, M. Cozin, R. Tsay, and R. Landesberg. Controlled delivery of growth factors derived from platelet-rich plasma for bone formation. J. Biomed. Mater. Res. A 86A(4):1128–1136, 2008.

    Article  CAS  Google Scholar 

  48. Lu, H. H., A. Tang, S. C. Oh, J. P. Spalazzi, and K. Dionisio. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Biomaterials 26:6323–6334, 2005.

    Article  PubMed  CAS  Google Scholar 

  49. Lyons, T. J., R. W. Stoddart, S. F. McClure, and J. McClure. The tidemark of the chondro-osseous junction of the normal human knee joint. J. Mol. Histol. 36:207–215, 2005.

    Article  PubMed  CAS  Google Scholar 

  50. Matava, M. J., and P. A. Hughes. Removal of a retained herbert-whipple screw with use of the osteochondral autograft transfer system (oats) core harvester: a case report. Am. J. Orthop. 33:598–601, 2004.

    PubMed  Google Scholar 

  51. Mauck, R. L., S. L. Seyhan, G. A. Ateshian, and C. T. Hung. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann. Biomed. Eng. 30:1046–1056, 2002.

    Article  PubMed  Google Scholar 

  52. Mauck, R. L., C. C. Wang, E. S. Oswald, G. A. Ateshian, and C. T. Hung. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr. Cartil. 11:879–890, 2003.

    Article  PubMed  CAS  Google Scholar 

  53. Mow, V. C., W. Y. Gu, F. H. Chen, and R. Huiskes. Structure and function of articular cartilage and meniscus. In: Basic Orthopaedic Biomechanics and Mechano-biology. Philadelphia: Lippincott Williams and Wilkins, 2007, pp. 181–258.

  54. Mow, V. C., C. S. Proctor, M. A. Kelly, M. Nordin, H. F. Victor, and K. Forssen. Biomechanics of articular cartilage. In: Basic Biomechanics of the Musculoskeletal System. Philadelphia, PA: Lea and Febiger, 1989, pp. 31–58.

  55. Ng, K. W., L. E. Kugler, S. B. Doty, G. A. Ateshian, and C. T. Hung. Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage. Osteoarthr. Cartil. 17:220–227, 2009.

    Article  PubMed  CAS  Google Scholar 

  56. Ng, K. W., E. G. Lima, L. Bian, C. J. O’Conor, P. S. Jayabalan, A. M. Stoker, K. Kuroki, C. R. Cook, G. A. Ateshian, J. L. Cook, and C. T. Hung. Passaged adult chondrocytes can form engineered cartilage with functional mechanical properties: a canine model. Tissue Eng. A 16:1041–1051, 2009.

    Article  Google Scholar 

  57. Niederauer, G. G., M. A. Slivka, N. C. Leatherbury, D. L. Korvick, H. H. Harroff, W. C. Ehler, C. J. Dunn, and K. Kieswetter. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials 21:2561–2574, 2000.

    Article  PubMed  CAS  Google Scholar 

  58. O’Driscoll, S. W., F. W. Keeley, and R. B. Salter. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J. Bone Jt. Surg. Am. 68:1017–1035, 1986.

    Google Scholar 

  59. Ochi, M., Y. Uchio, M. Tobita, and M. Kuriwaka. Current concepts in tissue engineering technique for repair of cartilage defect. Artif. Organs 25:172–179, 2001.

    Article  PubMed  CAS  Google Scholar 

  60. Oegema, Jr., T. R., R. J. Carpenter, F. Hofmeister, and R. C. Thompson, Jr. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc. Res. Tech. 37:324–332, 1997.

    Article  PubMed  Google Scholar 

  61. Oegema, Jr., T. R., S. L. Johnson, T. Meglitsch, and R. J. Carpenter. Prostaglandins and the zone of calcified cartilage in osteoarthritis. Am. J. Ther. 3:139–149, 1996.

    Article  PubMed  Google Scholar 

  62. Oegema, T. R., Jr., R. C. Thompson, Jr., and C.-G. K. Brandt. Cartilage-bone interface (tidemark). In: Cartilage Changes in Osteoarthritis. Indianapolis, IN: Indiana School of Medicine Publ., 1990, pp. 43–52.

  63. Oegema, T. R., Jr., R. C. Thompson, Jr., K. E. Kuettner, R. Schleyerbach, J. G. Peyron, and V. C. Hascall. The zone of calcified cartilage. Its role in osteoarthritis. In: Articular Cartilage and Osteoarthritis. New York, NY: Raven Press, 1992, pp. 319–331.

  64. Oettmeier, R., K. Abendroth, and S. Oettmeier. Analyses of the tidemark on human femoral heads. I. Histochemical, ultrastructural and microanalytic characterization of the normal structure of the intercartilaginous junction. Acta Morphol. Hung. 37:155–168, 1989.

    PubMed  CAS  Google Scholar 

  65. Radin, E. L., D. B. Burr, B. Caterson, D. Fyhrie, T. D. Brown, and R. D. Boyd. Mechanical determinants of osteoarthrosis. Semin. Arthr. Rheum. 21:12–21, 1991.

    Article  CAS  Google Scholar 

  66. Reddy, G. K., and C. S. Enwemeka. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 29:225–229, 1996.

    Article  PubMed  CAS  Google Scholar 

  67. Redler, I., V. C. Mow, M. L. Zimny, and J. Mansell. The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin. Orthop. Relat Res. 112:357–362, 1975.

    Article  PubMed  Google Scholar 

  68. Redman, S. N., S. F. Oldfield, and C. W. Archer. Current strategies for articular cartilage repair. Eur. Cell Mater. 9:23–32, 2005.

    PubMed  CAS  Google Scholar 

  69. Roberts, S. R., M. M. Knight, D. A. Lee, and D. L. Bader. Mechanical compression influences intracellular ca2+ signaling in chondrocytes seeded in agarose constructs. J. Appl. Physiol. 90:1385–1391, 2001.

    PubMed  CAS  Google Scholar 

  70. Schaefer, D., I. Martin, G. Jundt, J. Seidel, M. Heberer, A. Grodzinsky, I. Bergin, G. Vunjak-Novakovic, and L. E. Freed. Tissue-engineered composites for the repair of large osteochondral defects. Arthr. Rheum. 46:2524–2534, 2002.

    Article  Google Scholar 

  71. Schaefer, D., I. Martin, P. Shastri, R. F. Padera, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. In vitro generation of osteochondral composites. Biomaterials 21:2599–2606, 2000.

    Article  PubMed  CAS  Google Scholar 

  72. Schek, R. M., J. M. Taboas, S. J. Hollister, and P. H. Krebsbach. Tissue engineering osteochondral implants for temporomandibular joint repair. Orthod. Craniofac. Res. 8:313–319, 2005.

    Article  PubMed  CAS  Google Scholar 

  73. Schek, R. M., J. M. Taboas, S. J. Segvich, S. J. Hollister, and P. H. Krebsbach. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng. 10:1376–1385, 2004.

    PubMed  CAS  Google Scholar 

  74. Shao, X., J. C. Goh, D. W. Hutmacher, E. H. Lee, and G. Zigang. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng. 12:1539–1551, 2006.

    Article  PubMed  CAS  Google Scholar 

  75. Sherwood, J. K., S. L. Riley, R. Palazzolo, S. C. Brown, D. C. Monkhouse, M. Coates, L. G. Griffith, L. K. Landeen, and A. Ratcliffe. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23:4739–4751, 2002.

    Article  PubMed  CAS  Google Scholar 

  76. Singh, S., C. C. Lee, and B. K. Tay. Results of arthroscopic abrasion arthroplasty in osteoarthritis of the knee joint. Singapore Med. J. 32:34–37, 1991.

    PubMed  CAS  Google Scholar 

  77. Sledge, S. L. Microfracture techniques in the treatment of osteochondral injuries. Clin. Sports Med. 20:365–377, 2001.

    Article  PubMed  CAS  Google Scholar 

  78. Solchaga, L. A., J. Gao, J. E. Dennis, A. Awadallah, M. Lundberg, A. I. Caplan, and V. M. Goldberg. Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng. 8:333–347, 2002.

    Article  PubMed  CAS  Google Scholar 

  79. Solchaga, L. A., J. S. Temenoff, J. Gao, A. G. Mikos, A. I. Caplan, and V. M. Goldberg. Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthr. Cartil. 13:297–309, 2005.

    Article  PubMed  Google Scholar 

  80. Spalazzi, J. P., K. L. Dionisio, J. Jiang, and H. H. Lu. Osteoblast and chondrocyte interactions during coculture on scaffolds. IEEE Eng. Med. Biol. Mag. 22:27–34, 2003.

    Article  PubMed  Google Scholar 

  81. Teixeira, C. C., M. Hatori, P. S. Leboy, M. Pacifici, and I. M. Shapiro. A rapid and ultrasensitive method for measurement of DNA, calcium and protein content, and alkaline phosphatase activity of chondrocyte cultures. Calcif. Tissue Int. 56:252–256, 1995.

    Article  PubMed  CAS  Google Scholar 

  82. Thambyah, A. A hypothesis matrix for studying biomechanical factors associated with the initiation and progression of posttraumatic osteoarthritis. Med. Hypotheses 64:1157–1161, 2005.

    Article  PubMed  Google Scholar 

  83. Tuli, R., S. Nandi, W. J. Li, S. Tuli, X. Huang, P. A. Manner, P. Laquerriere, U. Noth, D. J. Hall, and R. S. Tuan. Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral construct. Tissue Eng. 10:1169–1179, 2004.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge funding support from the National Institutes of Health (AR055280) and the Wallace H. Coulter Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen H. Lu.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, J., Tang, A., Ateshian, G.A. et al. Bioactive Stratified Polymer Ceramic-Hydrogel Scaffold for Integrative Osteochondral Repair. Ann Biomed Eng 38, 2183–2196 (2010). https://doi.org/10.1007/s10439-010-0038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0038-y

Keywords

Navigation