Skip to main content

Advertisement

Log in

Impact of Airway Gas Exchange on the Multiple Inert Gas Elimination Technique: Theory

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The multiple inert gas elimination technique (MIGET) provides a method for estimating alveolar gas exchange efficiency. Six soluble inert gases are infused into a peripheral vein. Measurements of these gases in breath, arterial blood, and venous blood are interpreted using a mathematical model of alveolar gas exchange (MIGET model) that neglects airway gas exchange. A mathematical model describing airway and alveolar gas exchange predicts that two of these gases, ether and acetone, exchange primarily within the airways. To determine the effect of airway gas exchange on the MIGET, we selected two additional gases, toluene and m-dichlorobenzene, that have the same blood solubility as ether and acetone and minimize airway gas exchange via their low water solubility. The airway-alveolar gas exchange model simulated the exchange of toluene, m-dichlorobenzene, and the six MIGET gases under multiple conditions of alveolar ventilation-to-perfusion, \( \dot{V}_{\text{A}} /\dot{Q} \), heterogeneity. We increased the importance of airway gas exchange by changing bronchial blood flow, \( \dot{Q}_{\text{br}} \). From these simulations, we calculated the excretion and retention of the eight inert gases and divided the results into two groups: (1) the standard MIGET gases which included acetone and ether and (2) the modified MIGET gases which included toluene and m-dichlorobenzene. The MIGET mathematical model predicted distributions of ventilation and perfusion for each grouping of gases and multiple perturbations of \( \dot{V}_{\text{A}} /\dot{Q} \) and \( \dot{Q}_{\text{br}} \). Using the modified MIGET gases, MIGET predicted a smaller dead space fraction, greater mean \( \dot{V}_{\text{A}} \), greater log(SDVA), and more closely matched the imposed \( \dot{V}_{\text{A}} \) distribution than that using the standard MIGET gases. Perfusion distributions were relatively unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Anderson, J. C., A. L. Babb, and M. P. Hlastala. Modeling soluble gas exchange in the airways and alveoli. Ann. Biomed. Eng. 31:1402–1422, 2003.

    Article  PubMed  Google Scholar 

  2. Anderson, J. C., S. L. Bernard, D. L. Luchtel, A. L. Babb, and M. P. Hlastala. Axial and radial distribution of the bronchial vasculature in sheep. Respir. Physiol. Neurobiol. 132:329–339, 2002.

    Article  PubMed  Google Scholar 

  3. Anderson, J. C., and M. P. Hlastala. Breath tests and airway gas exchange. Pulm. Pharmacol. Ther. 20:112–117, 2007.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, J. C., W. J. E. Lamm, and M. P. Hlastala. Measuring airway exchange of endogenous acetone using a single exhalation breathing maneuver. J. Appl. Physiol. 100:880–889, 2006.

    Article  PubMed  Google Scholar 

  5. Bui, T. D., D. Dabdub, and S. C. George. Modeling bronchial circulation with application to soluble gas exchange: description and sensitivity analysis. J. Appl. Physiol. 84:2070–2088, 1998.

    CAS  PubMed  Google Scholar 

  6. Cander, L., and R. E. Forster. Determination of pulmonary parenchymal tissue volume and pulmonary capillary blood flow in man. J. Appl. Physiol. 14:541–551, 1959.

    CAS  Google Scholar 

  7. Cao, W. Q., and Y. X. Duan. Breath analysis: potential for clinical diagnosis and exposure assessment. Clin. Chem. 52:800–811, 2006.

    Article  CAS  PubMed  Google Scholar 

  8. Chilton, T. H., and A. P. Colburn. Mass transfer (absorption) coefficients: prediction from data on heat transfer and fluid friction. Ind. Eng. Chem. 26:1183–1187, 1934.

    Article  CAS  Google Scholar 

  9. Corte, P., and I. H. Young. Ventilation-perfusion relationships in symptomatic asthma. Response to oxygen and clemastine. Chest 88:167–175, 1985.

    Article  CAS  PubMed  Google Scholar 

  10. Diskin, A. M., P. Spanel, and D. Smith. Time variation of ammonia, acetone, isoprene and ethanol in breath: a quantitative SIFT-MS study over 30 days. Physiol. Meas. 24:107–119, 2003.

    Article  PubMed  Google Scholar 

  11. DuBois, A. B., and R. M. Rogers. Respiratory factors determining the tissue concentrations of inhaled toxic substances. Respir. Physiol. 5:34–52, 1968.

    Article  CAS  PubMed  Google Scholar 

  12. Dueck, R., I. Young, J. Clausen, and P. D. Wagner. Altered distribution of pulmonary ventilation and blood flow following induction of inhalation anesthesia. Anesthesiology 52:113–125, 1980.

    Article  CAS  PubMed  Google Scholar 

  13. Eger, 2nd, E. I., and C. P. Larson, Jr. Anaesthetic solubility in blood and tissues: values and significance. Br. J. Anaesth. 36:140–144, 1964.

    Article  PubMed  Google Scholar 

  14. Farhi, L. E. Elimination of inert gas by the lung. Respir. Physiol. 3:1–11, 1967.

    Article  CAS  PubMed  Google Scholar 

  15. Freyschuss, U., G. Hedlin, and G. Hedenstierna. Ventilation-perfusion relationships during exercise-induced asthma in children. Am. Rev. Respir. Dis. 130:888–894, 1984.

    CAS  PubMed  Google Scholar 

  16. Gale, G. E., J. R. Torre-Bueno, R. E. Moon, H. A. Saltzman, and P. D. Wagner. Ventilation-perfusion inequality in normal humans during exercise at sea level and simulated altitude. J. Appl. Physiol. 58:978–988, 1985.

    CAS  PubMed  Google Scholar 

  17. George, S. C., A. L. Babb, M. E. Deffebach, and M. P. Hlastala. Diffusion of nonelectrolytes in the canine trachea: effect of tight junction. J. Appl. Physiol. 80:1687–1695, 1996.

    CAS  PubMed  Google Scholar 

  18. George, S. C., A. L. Babb, and M. P. Hlastala. Dynamics of soluble gas exchange in the airways. III. Single-exhalation breathing maneuver. J. Appl. Physiol. 75:2439–2449, 1993.

    CAS  PubMed  Google Scholar 

  19. George, S. C., J. E. Souders, A. L. Babb, and M. P. Hlastala. Modeling steady-state inert gas exchange in the canine trachea. J. Appl. Physiol. 79:929–940, 1995.

    CAS  PubMed  Google Scholar 

  20. Guenard, H., G. Manier, Y. Castaing, and N. Varene. Series dead space for inert gases in healthy subjects. Pflugers Arch. 403:384–387, 1985.

    Article  CAS  PubMed  Google Scholar 

  21. Hanna, L. M., and P. W. Scherer. Regional control of local airway heat and water vapor losses. J. Appl. Physiol. 61:624–632, 1986.

    CAS  PubMed  Google Scholar 

  22. Hindmarsh, A. LSODE (Computer Software). Livermore, CA: Laurence Livermore Laboratory, 1981.

    Google Scholar 

  23. Hlastala, M. P., and J. C. Anderson. The impact of breathing pattern and lung size on the alcohol breath test. Ann. Biomed. Eng. 35:264–272, 2007.

    Article  PubMed  Google Scholar 

  24. Hlastala, M. P., and H. T. Robertson. Inert gas elimination characteristics of the normal and abnormal lung. J. Appl. Physiol. 44:258–266, 1978.

    CAS  PubMed  Google Scholar 

  25. Ingenito, E. P. Respiratory fluid mechanics and heat transfer (Ph.D.). Cambridge, MA: Massachusetts Institute of Technology, 1984.

  26. Johanson, G. Modeling of respiratory exchange of polar-solvents. Ann. Occup. Hyg. 35:323–339, 1991.

    Article  CAS  PubMed  Google Scholar 

  27. Kupari, M., J. Lommi, M. Ventila, and U. Karjalainen. Breath acetone in congestive heart failure. Am. J. Cardiol. 76:1076–1078, 1995.

    Article  CAS  PubMed  Google Scholar 

  28. Lowe, H. J., and K. Hagler. Determination of volatile organic anaesthetics in blood, gases, tissues and lipids: partition coefficients. In: Gas Chromatography in Biology and Medicine, edited by R. Porter. London: Churchill, 1969, pp. 86–103.

    Google Scholar 

  29. Mendis, S., P. A. Sobotka, and D. E. Euler. Expired hydrocarbons in patients with acute myocardial infarction. Free Radic. Res. 23:117–122, 1995.

    Article  CAS  PubMed  Google Scholar 

  30. Meulenberg, C. J., and H. P. Vijverberg. Empirical relations predicting human and rat tissue:air partition coefficients of volatile organic compounds. Toxicol. Appl. Pharmacol. 165:206–216, 2000.

    Article  CAS  PubMed  Google Scholar 

  31. Miekisch, W., J. K. Schubert, and G. F. Noeldge-Schomburg. Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin. Chim. Acta 347:25–39, 2004.

    Article  CAS  PubMed  Google Scholar 

  32. Moser, B., F. Bodrogi, G. Eibl, M. Lechner, J. Rieder, and P. Lirk. Mass spectrometric profile of exhaled breath—field study by PTR-MS. Respir. Physiol. Neurobiol. 145:295–300, 2005.

    Article  CAS  PubMed  Google Scholar 

  33. Phillips, M., R. N. Cataneo, A. R. Cummin, A. J. Gagliardi, K. Gleeson, J. Greenberg, R. A. Maxfield, and W. N. Rom. Detection of lung cancer with volatile markers in the breath. Chest 123:2115–2123, 2003.

    Article  CAS  PubMed  Google Scholar 

  34. Roca, J., and P. D. Wagner. Contribution of multiple inert gas elimination technique to pulmonary medicine. 1. Principles and information content of the multiple inert gas elimination technique. Thorax 49:815–824, 1994.

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez-Roisin, R., A. Ferrer, D. Navajas, A. G. Agusti, P. D. Wagner, and J. Roca. Ventilation-perfusion mismatch after methacholine challenge in patients with mild bronchial asthma. Am. Rev. Respir. Dis. 144:88–94, 1991.

    CAS  PubMed  Google Scholar 

  36. Sato, A., and T. Nakajima. Partition-coefficients of some aromatic-hydrocarbons and ketones in water, blood and oil. Br. J. Ind. Med. 36:231–234, 1979.

    CAS  PubMed  Google Scholar 

  37. Sato, A., and T. Nakajima. A structure-activity relationship of some chlorinated hydrocarbons. Arch. Environ. Health 34:69–75, 1979.

    CAS  PubMed  Google Scholar 

  38. Schimmel, C., S. L. Bernard, J. C. Anderson, N. L. Polissar, S. Lakshminarayan, and M. P. Hlastala. Soluble gas exchange in the pulmonary airways of sheep. J. Appl. Physiol. 97:1702–1708, 2004.

    Article  PubMed  Google Scholar 

  39. Schrikker, A. C., W. R. de Vries, A. Zwart, and S. C. Luijendijk. Uptake of highly soluble gases in the epithelium of the conducting airways. Pflugers Archiv. Eur. J. Physiol. 405:389–394, 1985.

    Article  CAS  Google Scholar 

  40. Schrikker, A. C., W. R. de Vries, A. Zwart, and S. C. Luijendijk. The excretion of highly soluble gases by the lung in man. Pflugers Archiv. Eur. J. Physiol. 415:214–219, 1989.

    Article  CAS  Google Scholar 

  41. Schrikker, A. C., H. Wesenhagen, and S. C. Luijendijk. Intrapulmonary gas mixing and dead space in artificially ventilated dogs. Pflugers Arch. 430:862–870, 1995.

    Article  CAS  PubMed  Google Scholar 

  42. Smith, D., P. Spanel, and S. Davies. Trace gases in breath of healthy volunteers when fasting and after a protein-calorie meal: a preliminary study. J. Appl. Physiol. 87:1584–1588, 1999.

    CAS  PubMed  Google Scholar 

  43. Souders, J. E., S. C. George, N. L. Polissar, E. R. Swenson, and M. P. Hlastala. Tracheal gas exchange: perfusion-related differences in inert gas elimination. J. Appl. Physiol. 79:918–928, 1995.

    CAS  PubMed  Google Scholar 

  44. Tsu, M. E., A. L. Babb, D. D. Ralph, and M. P. Hlastala. Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study. Ann. Biomed. Eng. 16:547–571, 1988.

    Article  CAS  PubMed  Google Scholar 

  45. Twedt, M. M. An analysis of the effects of axial dispersion and tissue solubility on gas exchange in the upper airways (M.S.). Seattle, WA: University of Washington, 1996.

  46. van Löbensels, E. M., J. C. Anderson, J. Hildebrandt, and M. P. Hlastala. Modeling diffusion limitation of gas exchange in lungs containing perfluorocarbon. J. Appl. Physiol. 86:273–284, 1999.

    Google Scholar 

  47. von Basum, G., H. Dahnke, D. Halmer, P. Hering, and M. Murtz. Online recording of ethane traces in human breath via infrared laser spectroscopy. J. Appl. Physiol. 95:2583–2590, 2003.

    Google Scholar 

  48. Wagner, P. D., D. R. Dantzker, R. Dueck, J. L. Clausen, and J. B. West. Ventilation-perfusion inequality in chronic obstructive pulmonary disease. J. Clin. Invest. 59:203–216, 1977.

    Article  CAS  PubMed  Google Scholar 

  49. Wagner, P. D., G. Hedenstierna, and G. Bylin. Ventilation-perfusion inequality in chronic asthma. Am. Rev. Respir. Dis. 136:605–612, 1987.

    CAS  PubMed  Google Scholar 

  50. Wagner, P. D., P. F. Naumann, and R. B. Laravuso. Simultaneous measurement of eight foreign gases in blood by gas chromatography. J. Appl. Physiol. 36:600–605, 1974.

    CAS  PubMed  Google Scholar 

  51. Wagner, P. D., H. A. Saltzman, and J. B. West. Measurement of continuous distributions of ventilation-perfusion ratios: theory. J. Appl. Physiol. 36:588–599, 1974.

    CAS  PubMed  Google Scholar 

  52. Wang, C. J., S. T. Scherrer, and D. Hossain. Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and near-infrared spectral regions: potential for development of a breath analyzer. Appl. Spectrosc. 58:784–791, 2004.

    Article  CAS  PubMed  Google Scholar 

  53. Weibel, E. R. Morphometry of the Human Lung. New York: Academic Press, 1963.

    Google Scholar 

  54. Wilhelm, E., R. Battino, and R. J. Wilcock. Low-pressure solubility of gases in liquid water. Chem. Rev. 77:219–262, 1977.

    Article  CAS  Google Scholar 

  55. Young, I. H., P. Corte, and R. E. Schoeffel. Pattern and time course of ventilation-perfusion inequality in exercise-induced asthma. Am. Rev. Respir. Dis. 125:304–311, 1982.

    CAS  PubMed  Google Scholar 

  56. Zwart, A., S. C. Luijendijk, and W. R. de Vries. Excretion-retention data of steady state gas exchange in tidal breathing. I. Dependency on the blood-gas partition coefficient. Pflugers Arch. 407:204–210, 1986.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the National Institute for Biomedical Imaging and Bioengineering Grants T32 EB001650 and BE 001973, the National Heart, Lung, and Blood Institute Grants HL 64368 and HL073598, and the National Science Foundation Grant 04-607/NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C. Anderson.

Additional information

Associate Editor Kenneth R. Lutchen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.C., Hlastala, M.P. Impact of Airway Gas Exchange on the Multiple Inert Gas Elimination Technique: Theory. Ann Biomed Eng 38, 1017–1030 (2010). https://doi.org/10.1007/s10439-009-9884-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9884-x

Keywords

Navigation