Skip to main content
Log in

Transient Absorption of Inhaled Vapors into a Multilayer Mucus–Tissue–Blood System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Previous studies have approximated the absorption of vapors into the walls of the respiratory tract as a steady state process. However, non-dimensional analysis indicates that the absorption of vapors in the conducting airways is time-dependent over the timescale of a breathing cycle. The objective of this study was to evaluate the mass transport of sample chemical species through a simple multilayer system composed of mucus, tissue, and blood components on a transient basis. Individual multilayer models were considered that represent the wall dimensions of the nasal extrathoracic (ET2), bronchial (BB), and bronchiolar (bb) airways. Sample vapors considered were acetaldehyde and benzene, which are highly soluble and moderately soluble in mucus, respectively. To determine absorption, mass transport was calculated based on an existing analytical steady state solution, a new analytical transient solution, and a numerical transient solution. Results indicated that concentrations within the mucus and tissue layers were highly time dependent in the ET2 and BB regions and moderately time dependent in the bb airways over the timescale of an inhalation cycle, which is approximately 1–2 s. Fluxes of vapors into the tissue and blood varied with time for approximately 6–8 s in the BB region and 0.6–0.8 s in the bb model. The associated transient blood uptake of acetaldehyde and benzene in the upper ET2 and BB regions varied from steady state values by a factor of approximately 30 after 1 s. Under similar conditions, transient uptake in the bb model varied from steady state conditions by a factor of approximately 1.3. Surprisingly, inclusion of chemical reactions in the mucus and tissue modified the transient uptake predictions only for very large values of reaction rate coefficients (K > 100 min−1). In summary, transient effects significantly impact the absorption of vapors into the walls of the upper respiratory tract (ET2 and BB regions) and may largely diminish the effects of chemical reactions over the timescale of an inhalation cycle. Furthermore, the transient analytical solution that was developed provides the basis for an improved boundary condition in future CFD simulations of air-phase transport and wall absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Acetaldehyde (Update). Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service, 2007.

  2. ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Benzene (Update). Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service, 2007.

  3. Aharonson, E. F., H. Menkes, G. Gurtner, D. L. Swift, and D. F. Proctor. Effecs of respiratory airflow rate on removal of soluble vapors by the nose. J. Appl. Physiol. 37:654–657, 1974.

    PubMed  CAS  Google Scholar 

  4. Anderson, J. C., A. L. Babb, and M. P. Hlastala. Modeling soluble gas exchange in the airways and alveoli. Ann. Biomed. Eng. 31:1402–1422, 2003.

    Article  PubMed  Google Scholar 

  5. Bird, R. B., W. E. Steward, and E. N. Lightfoot. Transport Phenomena. New York: John Wiley & Sons, 1960.

    Google Scholar 

  6. Brent, R. Algorithms for Minimization and Without Derivatives. Prentice-Hall, 1973.

  7. Chang, J. C. F., E. A. Gross, J. A. Swenberg, and C. S. Barrow. Nasal cavity deposition, histopathology, and cell proliferation after single or repeated formaldehyde exposures in B6C3F1 mice and F-344 rats. Toxicol. Appl. Pharmacol. 68:161–176, 1983.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen Hubal, E. A., P. S. Fedkiw, and J. S. Kimbell. Mass-transport models to predict toxicity of inhaled gases in the upper respiratory tract. J. Appl. Physiol. 80(4):1415–1427, 1996.

    Google Scholar 

  9. Cohen Hubal, E. A., J. S. Kimbell, and P. S. Fedkiw. Incorporation of nasal-lining mass-transfer resistance into a CFD model for prediction of ozone dosimetry in the upper respiratory tract. Inhalation Toxicol. 8:831–857, 1996.

    Article  Google Scholar 

  10. Cohen Hubal, E. A., P. M. Schlosser, R. B. Conolly, and J. S. Kimbell. Comparison of inhaled formaldehyde dosimetry predictions with DNA–protein cross-link measurements in the rat nasal passages. Toxicol. Appl. Pharmacol. 143:47–55, 1997.

    Article  Google Scholar 

  11. EPA. National-Scale Air Toxics Assessment. http://www.epa.gov/ttn/atw/nata1999/, 1999.

  12. Foster, W. M., E. Langenback, and E. H. Bergofsky. Measurement of tracheal and bronchial mucus velocities in man—relation to lung clearance. J. Appl. Physiol. 48(6):965–971, 1980.

    PubMed  CAS  Google Scholar 

  13. Franks, S. J. A mathematical model for the absorption and metabolism of formaldehyde vapors in humans. Toxicol. Appl. Pharmacol. 206:309–320, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Frederick, C. B., M. L. Bush, L. G. Lomax, K. A. Black, L. Finch, J. S. Kimbell, K. T. Morgan, R. P. Subramaniam, J. B. Morris, and J. S. Ultman. Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways. Toxicol. Appl. Pharmacol. 152(1):211–231, 1998.

    Article  PubMed  CAS  Google Scholar 

  15. George, S. C., A. L. Babb, M. E. Deffebach, and M. P. Hlastala. Diffusion of nonelectrolytes in the canine trachea: effect of thigh junction. J. Appl. Physiol. 80:1687–1695, 1996.

    PubMed  CAS  Google Scholar 

  16. Goswami, C., and K. K. Banerji. The mechanism of the oxidation of acetaldehyde by chromic acid. Bull. Chem. Soc. Jpn. 43:2643–2645, 1970.

    Article  CAS  Google Scholar 

  17. Hlastala, M. P., and H. T. Robertson. Complexity in Structure and Function of the Lung. Informa Health Care, 1998.

  18. ICRP. Human Respiratory Tract Model for Radiological Protection. New York: Elsevier Science Ltd., 1994.

    Google Scholar 

  19. Jarabek, A. M. The application of dosimetry models to identify key processes and parameters for default dose–response assessment approaches. Toxicol. Lett. 79:171–184, 1995.

    Article  PubMed  CAS  Google Scholar 

  20. Jeffrey, A. Applied Partial Differential Equations: An Introduction. Academic Press, 2002.

  21. Karch, S. B., and M. Peat. Drug Abuse Handbook. CRC Press, 2007.

  22. Keyhani, K., P. W. Scherer, and M. M. Mozell. A numerical model of nasal odorant transport for the analysis of human olfaction. J. Theor. Biol. 186:279–301, 1997.

    Article  PubMed  CAS  Google Scholar 

  23. Kimbell, J. S., E. A. Gross, D. R. Joyner, M. N. Godo, and K. T. Morgan. Application of computational fluid dynamics regional dosimetry of inhaled chemicals in the upper respiratory tract of the rat. Toxicol. Appl. Pharmacol. 121:253–263, 1993.

    Article  PubMed  CAS  Google Scholar 

  24. Kimbell, J. S., J. H. Overton, R. P. Subramaniam, P. M. Schlosser, K. T. Morgan, R. B. Conolly, and F. J. Miller. Dosimetry modeling of inhaled formaldehyde: binning nasal flux predictions for quantitative risk assessment. Toxicol. Sci. 64(1):111–121, 2001.

    PubMed  CAS  Google Scholar 

  25. Kimbell, J. S., and R. P. Subramaniam. Use of computational fluid dynamics models for dosimetry of inhaled gases in the nasal passages. Inhalation Toxicol. 13(5):325–334, 2001.

    Article  CAS  Google Scholar 

  26. Kimbell, J. S., R. P. Subramaniam, E. A. Gross, P. M. Schlosser, and K. T. Morgan. Dosimetry modeling of inhaled formaldehyde: comparisons of local flux predictions in the rat, monkey, and human nasal passages. Toxicol. Sci. 64(1):100–110, 2001.

    PubMed  CAS  Google Scholar 

  27. LaBelle, C. W., J. E. Long, and E. E. Christofano. Synergistic effects of aerosols. Arch. Ind. Health 11:297–304, 1955.

    CAS  Google Scholar 

  28. McClellan, R. O., and R. F. Henderson, Concepts in Inhalation Toxicology. CRC Press, 1995.

  29. Miller, F. J., J. H. Overton, R. H. Jaskot, and D. B. Menzel. A model of the regional uptake of gaseous pollutants in the lung. Toxicol. Appl. Pharmacol. 79:11–27, 1985.

    Article  PubMed  CAS  Google Scholar 

  30. Morris, J. B., and K. T. Blanchard. Upper respiratory tract deposition of inspired acetaldehyde. Toxicol. Appl. Pharmacol. 114:140–146, 1992.

    Article  PubMed  CAS  Google Scholar 

  31. Morris, J. B., and D. G. Cavanagh. Deposition of ethanol and acetone vapors in the upper respiratory tract of the rat. Fundam. Appl. Toxicol. 6:78–88, 1986.

    Article  PubMed  CAS  Google Scholar 

  32. Morris, J. B., and D. G. Cavanagh. Metabolism and deposition of propanol and acetone vapors in the upper respiratory tract of the hamster. Fundam. Appl. Toxicol. 9:34–40, 1987.

    Article  PubMed  CAS  Google Scholar 

  33. NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/, 2008.

  34. Powers, D. L. Boundary Value Problems. Academic Press, 1972.

  35. Sakuma, H., M. Kusama, K. Yamaguchi, T. Matsuki, and S. Sugawara. The distribution of cigarette smoke components between mainstream and sidestream smoke. I. Acidic Components. Beitr. Tabakforsch. 12(2):63–71, 1984.

    Google Scholar 

  36. Shi, H., C. Kleinstreuer, and Z. Zhang. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model. J. Biomech. Eng. 128:697–706, 2006.

    Article  PubMed  CAS  Google Scholar 

  37. Talhout, R., A. Opperhuizen, and J. G. C. van Amsterdam. Role of acetaldehyde in tobacco smoke addiction. Eur. Neuropsychopharmacol. 17:627–636, 2007.

    Article  PubMed  CAS  Google Scholar 

  38. Taylor, A. B., A. Borhan, and J. S. Ultman. Three-dimensional simulations of reactive gas uptake in single airway bifurcations. Ann. Biomed. Eng. 35(2):235–249, 2007.

    Article  PubMed  Google Scholar 

  39. US Department of Environmental Quality. DEQ Remediation and Redevelopment Operational Memorandum. http://www.deq.state.mi.us/documents/deq-rrd-OpMemo_1-Attachment1Table4ChemicalPhysical.pdf, 1994.

  40. Weibel, E. R. Morphometry of the Human Lung. Berlin: Springer Verlag, 1963.

    Google Scholar 

  41. Yeates, D. B., G. J. Besseris, and L. B. Wong. Physicochemical properties of mucus and its propulsion. In: The Lung: Scientific Foundations, edited by R. G. Crystal and J. B. West. Philadelphia: Lippincott-Raven Publishers, 1997, pp. 487–503.

    Google Scholar 

  42. Zhang, Z., and C. Kleinstreuer. Species heat and mass transfer in a human upper airway model. Int. J. Heat Mass Transfer 46(25):4755–4768, 2003.

    Article  Google Scholar 

  43. Zhang, Z., and C. Kleinstreuer. Transport and uptake of MTBE and ethanol vapors in a human upper airway model. Inhalation Toxicol. 18:169–184, 2006.

    Article  CAS  Google Scholar 

  44. Zhang, Z., C. Kleinstreuer, and C. S. Kim. Water vapor transport and its effects on the deposition of hygroscopic droplets in a human upper airway model. Aerosol Sci. Technol. 40:52–67, 2006.

    Google Scholar 

  45. Zhao, K., P. W. Scherer, S. A. Hajiloo, and P. Dalton. Effects of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem. Senses 29(5):365–379, 2004.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Worth Longest.

Appendix A

Appendix A

In this section, the analytic transient solution for time-dependent variables C m(y,t) and C t(y,t) is developed. Knowing the steady state solution for \( \tilde{C}_{\text{m}} (y) \) and \( \tilde{C}_{\text{t}} (y), \) it is appropriate to represent \( \hat{C}_{\text{m}} (y,t) \) and \( \hat{C}_{\text{t}} (y,t) \) as the transient concentration distributions34:

$$ \hat{C}_{\text{m}} (y,t) = C_{\text{m}} (y,t) - \tilde{C}_{\text{m}} (y)\quad {\text{and}}\quad \hat{C}_{\text{t}} (y,t) = C_{\text{t}} (y,t) - \tilde{C}_{\text{t}} (y) $$
(A.1)

By using these expressions, we have the following relations

$$ {\frac{{\partial \hat{C}_{\text{m}} (y,t)}}{\partial t}} = {\frac{{\partial C_{\text{m}} (y,t)}}{\partial t}} - {\frac{{d\tilde{C}_{\text{m}} (y)}}{dt}} = {\frac{{\partial C_{\text{m}} (y,t)}}{\partial t}}, $$
(A.2a)
$$ {\frac{{\partial \hat{C}_{\text{t}} (y,t)}}{\partial t}} = {\frac{{\partial C_{\text{t}} (y,t)}}{\partial t}} - {\frac{{d\tilde{C}_{\text{t}} (y)}}{dt}} = {\frac{{\partial C_{\text{t}} (y,t)}}{\partial t}}, $$
(A.2b)
$$ {\frac{{\partial^{2} \hat{C}_{\text{m}} (y,t)}}{{\partial y^{2} }}} = {\frac{{\partial^{2} C_{\text{m}} (y,t)}}{{\partial y^{2} }}} - {\frac{{d^{2} \tilde{C}_{\text{m}} (y)}}{{dy^{2} }}} = {\frac{{\partial^{2} C_{\text{m}} (y,t)}}{{\partial y^{2} }}}, $$
(A.2c)

and

$$ {\frac{{\partial^{2} \hat{C}_{\text{t}} (y,t)}}{{\partial y^{2} }}} = {\frac{{\partial^{2} C_{\text{t}} (y,t)}}{{\partial y^{2} }}} - {\frac{{d^{2} \tilde{C}_{\text{t}} (y)}}{{dy^{2} }}} = {\frac{{\partial^{2} C_{\text{t}} (y,t)}}{{\partial y^{2} }}}. $$
(A.2d)

Therefore, we get the following equations for \( \hat{C}_{\text{m}} (y,t) \) and \( \hat{C}_{\text{t}} (y,t) \)

$$ {\frac{{\partial \hat{C}_{\text{m}} (y,t)}}{\partial t}} = D_{\text{m}} {\frac{{\partial^{2} \hat{C}_{\text{m}} (y,t)}}{{\partial y^{2} }}},\quad y \in [0,H_{\text{m}} ] $$
(A.3a)
$$ {\frac{{\partial \hat{C}_{\text{t}} (y,t)}}{\partial t}} = D_{\text{t}} {\frac{{\partial^{2} \hat{C}_{\text{t}} (y,t)}}{{\partial y^{2} }}},\quad y \in [H_{\text{m}} ,H_{\text{m}} + H_{\text{t}} ] $$
(A.3b)

The initial conditions are

$$ \hat{C}_{\text{m}} (y,0) = C_{\text{m}} (y,0) - \tilde{C}_{\text{m}} (y) = {\frac{{\lambda_{\text{ma}} C_{\text{air}} - \tilde{C}_{\text{m}} (y)|_{{y = H_{\text{m}} }} }}{{H_{\text{m}} }}}y - \lambda_{\text{ma}} C_{\text{air}} $$
(A.4a)

and

$$ \hat{C}_{\text{t}} (y,0) = C_{\text{t}} (y,0) - \tilde{C}_{\text{t}} (y) = {\frac{{\lambda_{\text{tm}} \tilde{C}_{\text{m}} (y)|_{{y = H_{\text{m}} }} }}{{H_{\text{t}} }}}y - {\frac{{\lambda_{\text{tm}} \tilde{C}_{\text{m}} (y)|_{{y = H_{\text{m}} }} }}{{H_{\text{t}} }}}(H_{\text{m}} + H_{\text{t}} ). $$
(A.4b)

The boundary conditions are

$$ \hat{C}_{\text{m}} (y,t)|_{y = 0} = C_{\text{m}} (y,t)|_{y = 0} - \tilde{C}_{\text{m}} (y)|_{y = 0} = 0, $$
(A.5a)
$$ \hat{C}_{\text{t}} (y,t)|_{{y = H_{\text{m}} }} = \lambda_{\text{tm}} \hat{C}_{\text{m}} (y,t)|_{{y = H_{\text{m}} }} , $$
(A.5b)
$$ - D_{\text{m}} {\frac{{\partial \hat{C}_{\text{m}} (y,t)}}{\partial y}}|_{{y = H_{\text{m}} }} = - D_{\text{t}} {\frac{{\partial \hat{C}_{\text{t}} (y,t)}}{\partial y}}|_{{y = H_{\text{m}} }} , $$
(A.5c)

and

$$ \hat{C}_{\text{t}} (y,t)|_{{y = H_{\text{m}} + H_{\text{t}} }} = C_{\text{t}} (y,t)|_{{y = H_{\text{m}} + H_{\text{t}} }} - \tilde{C}_{\text{t}} (y,t)|_{{y = H_{\text{m}} + H_{\text{t}} }} = 0. $$
(A.5d)

Introducing a dimensionless variable ξ = y/H m, Eqs. (A.3a) and (A.3b) become

$$ {\frac{{\partial \hat{C}_{\text{m}} (\xi ,t)}}{\partial t}} = {\frac{{D_{\text{m}} }}{{H_{\text{m}}^{2} }}}{\frac{{\partial^{2} \hat{C}_{\text{m}} (\xi ,t)}}{{\partial \xi^{2} }}},\quad \xi \in [0,1] $$
(A.6a)
$$ {\frac{{\partial \hat{C}_{\text{t}} (\xi ,t)}}{\partial t}} = {\frac{{D_{\text{t}} }}{{H_{\text{m}}^{2} }}}{\frac{{\partial^{2} \hat{C}_{\text{t}} (\xi ,t)}}{{\partial \xi^{2} }}},\quad \xi \in [1,1 + H_{\text{t}} /H_{\text{m}} ] $$
(A.6b)

Substitution of the product \( \hat{C}_{\text{m}} (\xi ,t) = \hat{Y}_{\text{m}} (\xi )T(t) \) into Eq. (A.6a) gives

$$ {\frac{1}{{\hat{Y}_{\text{m}} }}}{\frac{{d^{2} \hat{Y}_{\text{m}} }}{{d\xi^{2} }}} = {\frac{{H_{\text{m}}^{2} }}{{D_{\text{m}} }}}{\frac{1}{T}}{\frac{dT}{dt}} = - \mu^{2} ,\quad \mu \ne 0 $$
(A.7a)

Similarly, substitution of the product \( \hat{C}_{\text{t}} (\xi ,t) = \hat{Y}_{\text{t}} (\xi )T^{\prime}(t) \) into Eq. (A.6b) after multiplying by D t/D m gives

$$ {\frac{{D_{\text{t}} }}{{D_{\text{m}} }}}{\frac{1}{{\hat{Y}_{\text{t}} }}}{\frac{{d^{2} \hat{Y}_{\text{t}} }}{{d\xi^{2} }}} = {\frac{{H_{\text{m}}^{2} }}{{D_{\text{m}} }}}{\frac{1}{{T^{\prime}}}}{\frac{{dT^{\prime}}}{dt}} = - \mu^{2} ,\quad \mu \ne 0 $$
(A.7b)

where μ 2 is a separation constant. Equations (A.7a) and (A.7b) immediately result in four ordinary differential equations

$$ {\frac{{d^{2} \hat{Y}_{\text{m}} }}{{d\xi^{2} }}} + \mu^{2} \hat{Y}_{\text{m}} = 0, $$
(A.8a)
$$ {\frac{dT}{dt}} = - \mu^{2} {\frac{{D_{\text{m}} }}{{H_{\text{m}}^{2} }}}T, $$
(A.8b)
$$ {\frac{{d^{2} \hat{Y}_{\text{t}} }}{{d\xi^{2} }}} + {\frac{{\mu^{2} D_{\text{m}} }}{{D_{\text{t}} }}}\hat{Y}_{\text{t}} = 0, $$
(A.8c)

and

$$ {\frac{{dT^{\prime}}}{dt}} = - \mu^{2} {\frac{{D_{\text{m}} }}{{H_{\text{m}}^{2} }}}T^{\prime}. $$
(A.8d)

The solutions for the spatially dependent functions \( \hat{Y}_{\text{m}} (y) \) and \( \hat{Y}_{\text{t}} (y) \) are obtained from Eqs. (A.8a) and (A.8c), and substituting for ξ gives

$$ \hat{Y}_{\text{m}} (y) = A\cos \left( {{\frac{\mu y}{{H_{\text{m}} }}}} \right) + B\sin \left( {{\frac{\mu y}{{H_{\text{m}} }}}} \right) $$
(A.9a)

and

$$ \hat{Y}_{\text{t}} (y) = A^{\prime}\cos \left( {\mu \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{y}{{H_{\text{m}} }}}} \right) + B^{\prime}\sin \left( {\mu \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{y}{{H_{\text{m}} }}}} \right). $$
(A.9b)

The solutions for the time-variable functions T(t) and T′(t) are obtained from Eqs. (A.8b) and (A.8d) as

$$ T(t) = T^{\prime}(t) = e^{{ - \mu^{2} {\frac{{D_{\text{m}} }}{{H_{\text{m}}^{2} }}}t}} > 0. $$
(A.9c)

Considering \( \hat{C}_{\text{m}} (0,t) = \hat{Y}_{\text{m}} (0)T(t) = 0, \) it follows that \( \hat{Y}_{\text{m}} (0) = 0, \) which results in A = 0. As a result, Eq. (A.9a) simplifies to

$$ \hat{Y}_{\text{m}} (y) = B\sin \left( {{\frac{\mu y}{{H_{\text{m}} }}}} \right). $$
(A.10a)

Similarly, as \( \hat{C}_{\text{t}} (y,t)|_{{y = H_{\text{m}} + H_{\text{t}} }} = \hat{Y}_{\text{t}} (H_{\text{m}} + H_{\text{t}} )T(t) = 0, \) it follows that \( \hat{Y}_{\text{t}} (H_{\text{m}} + H_{\text{t}} ) = 0, \) and Eq. (A.9b) simplifies to20

$$ \hat{Y}_{\text{t}} (y) = P\sin \left( {\mu \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{{H_{\text{m}} + H_{\text{t}} - y}}{{H_{\text{m}} }}}} \right). $$
(A.10b)

Substituting (A.10a) and (A.10b) into the Eqs. (A.5b) and (A.5c), the boundary conditions become,

$$ \lambda_{\text{tm}} B\sin (\mu ) = P\sin \left( {\mu \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{{H_{\text{t}} }}{{H_{\text{m}} }}}} \right) $$
(A.11a)

and

$$ - D_{\text{m}} B{\frac{\mu }{{H_{\text{m}} }}}\cos (\mu ) = D_{\text{t}} P{\frac{\mu }{{H_{\text{m}} }}}\sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} \cos \left( {\mu \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{{H_{\text{t}} }}{{H_{\text{m}} }}}} \right). $$
(A.11b)

Dividing Eq. (A.11a) by (A.11b), the eigenvalues, μ n , are the sequential positive roots of the transcendental equation

$$ \lambda_{\text{tm}} \sqrt {{\frac{{D_{\text{t}} }}{{D_{\text{m}} }}}} \tan (\mu ) + \tan \left( {\mu \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{{H_{\text{t}} }}{{H_{\text{m}} }}}} \right) = 0. $$
(A.12)

The eigenvalues μ can be calculated numerically using Brent’s method,6 which combines bisection, secant, and inverse quadratic interpolation methods. The first five eigenvalues μ in the series, are provided in Tables A.1A.3 at the end of this section.

Table A.1 The first five eigenvalues μ and coefficients W (g/cm3) for the ET2 model
Table A.2 The first five eigenvalues μ and coefficients W (g/cm3) for the BB model
Table A.3 The first five eigenvalues μ and coefficients W (g/cm3) for the bb model

Constants B and P come directly from Eq. (A.11a)

$$ B = \sin \left( {\mu \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{{H_{\text{t}} }}{{H_{\text{m}} }}}} \right) $$
(A.13a)

and

$$ P = \lambda_{\text{tm}} \sin (\mu ). $$
(A.13b)

Substituting Eqs. (A.13a) and (A.13b), Eq. (A.11b) becomes

$$ - \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{1}{{\lambda_{\text{tm}} }}}\sin \left( {\mu \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{{H_{\text{t}} }}{{H_{\text{m}} }}}} \right)\cos (\mu ) = \sin (\mu )\cos \left( {\mu \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{{H_{\text{t}} }}{{H_{\text{m}} }}}} \right). $$
(A.14)

Substituting Eqs. (A.13a) and (A.13b), Eqs. (A.10a) and (A.10b) become

$$ \hat{Y}_{\text{m}} (y) = \sin \left( {\mu \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{{H_{\text{t}} }}{{H_{\text{m}} }}}} \right)\sin \left( {{\frac{\mu y}{{H_{\text{m}} }}}} \right) $$
(A.15a)

and

$$ \hat{Y}_{\text{t}} (y) = \lambda_{\text{tm}} \sin (\mu )\sin \left( {\mu \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{{H_{\text{m}} + H_{\text{t}} - y}}{{H_{\text{m}} }}}} \right). $$
(A.15b)

The concentration solutions \( \hat{C}_{\text{m}} (y,t) \) and \( \hat{C}_{\text{t}} (y,t) \) lead to classical Fourier series solutions that take the following form

$$ \hat{C}_{\text{m}} (y,t) = \sum\limits_{n = 1}^{\infty } {W_{n} \sin \left( {\mu_{n} \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{{H_{\text{t}} }}{{H_{\text{m}} }}}} \right)\sin \left( {{\frac{{\mu_{n} y}}{{H_{\text{m}} }}}} \right)e^{{ - \mu_{n}^{2} {\frac{{D_{\text{m}} }}{{H_{\text{m}}^{2} }}}t}} } ,\quad y \in [0,H_{\text{m}} ] $$
(A.16a)
$$ \hat{C}_{\text{t}} (y,t) = \lambda_{\text{tm}} \sum\limits_{n = 1}^{\infty } {W_{n} \sin (\mu_{n} )\sin \left( {\mu_{n} \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{{H_{\text{m}} + H_{\text{t}} - y}}{{H_{\text{m}} }}}} \right)e^{{ - \mu_{n}^{2} {\frac{{D_{\text{m}} }}{{H_{\text{m}}^{2} }}}t}} } ,\quad y \in [H_{\text{m}} ,H_{\text{m}} + H_{\text{t}} ] $$
(A.16b)

The coefficients W n (g/cm3) can be determined by utilizing the orthogonal relation and initial condition of zero mucus and tissue concentration.

$$ W_{n} = {\frac{{\int_{0}^{{H_{\text{m}} }} {\hat{C}_{\text{m}} (y,0)\hat{Y}_{\text{m}} (y)dy + \eta } \int_{{H_{\text{m}} }}^{{H_{\text{m}} + H_{\text{t}} }} {\hat{C}_{\text{t}} (y,0)\hat{Y}_{\text{t}} (y)dy} }}{{\int_{0}^{{H_{\text{m}} }} {\left[ {\hat{Y}_{\text{m}} (y)} \right]^{2} dy + \eta } \int_{{H_{\text{m}} }}^{{H_{\text{m}} + H_{\text{t}} }} {\left[ {\hat{Y}_{\text{t}} (y)} \right]^{2} dy} }}}, $$
(A.16c)

where η is a weight function that must satisfy

$$ \int\limits_{0}^{{H_{\text{m}} }} {\hat{Y}_{{{\text{m}}i}} (y)\hat{Y}_{{{\text{m}}j}} (y)dy + \eta \int\limits_{{H_{\text{m}} }}^{{H_{\text{m}} + H_{\text{t}} }} {\hat{Y}_{{{\text{t}}i}} (y)\hat{Y}_{{{\text{t}}j}} (y)dy} } = 0,\quad i \ne j $$
(A.16d)

By a detailed derivation, the eigen functions are orthogonal with η = 1/λ tm over the interval [0, H m + H t]. Thus, substituting η = 1/λ tm into Eq. (A.16c), the coefficients W n can be determined. These coefficients were calculated numerically and the first five values in the series are tabulated in Tables A.1A.3.

The resulting analytic transient solutions for C m(y,t) and C t(y,t) have the following form

$$ \begin{aligned} C_{\text{m}} (y,t) = & \hat{C}_{\text{m}} (y,t) + \tilde{C}_{\text{m}} (y) \\ = & \sum\limits_{n = 1}^{\infty } {W_{n} \sin \left( {\mu_{n} \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{{H_{\text{t}} }}{{H_{\text{m}} }}}} \right)\sin \left( {{\frac{{\mu_{n} y}}{{H_{\text{m}} }}}} \right)e^{{ - \mu_{n}^{2} {\frac{{D_{\text{m}} }}{{H_{\text{m}}^{2} }}}t}} } + \lambda_{\text{ma}} C_{\text{air}} - {\frac{{\lambda_{\text{ma}} C_{\text{air}} - \tilde{C}_{\text{m}} (y)|_{{y = H_{\text{m}} }} }}{{H_{\text{m}} }}}y, \\ \end{aligned} $$
(A.17a)
$$ \begin{aligned} C_{\text{t}} (y,t) = & \hat{C}_{\text{t}} (y,t) + \tilde{C}_{\text{t}} (y) \\ = & \lambda_{\text{tm}} \sum\limits_{n = 1}^{\infty } {W_{n} \sin (\mu_{n} )\sin \left( {\mu_{n} \sqrt {{\frac{{D_{\text{m}} }}{{D_{\text{t}} }}}} {\frac{{H_{\text{m}} + H_{\text{t}} - y}}{{H_{\text{m}} }}}} \right)e^{{ - \mu_{n}^{2} {\frac{{D_{\text{m}} }}{{H_{\text{m}}^{2} }}}t}} } + {\frac{{\lambda_{\text{tm}} \tilde{C}_{\text{m}} (y)|_{{y = H_{\text{m}} }} }}{{H_{\text{t}} }}}(H_{\text{m}} + H_{\text{t}} - y), \\ \end{aligned} $$
(A.17b)

The value of \( \tilde{C}_{\text{m}} (y)|_{{y = H_{\text{m}} }} \) is determined from the steady state solution, shown previously.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, G., Longest, P.W. Transient Absorption of Inhaled Vapors into a Multilayer Mucus–Tissue–Blood System. Ann Biomed Eng 38, 517–536 (2010). https://doi.org/10.1007/s10439-009-9808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9808-9

Keywords

Navigation