Skip to main content
Log in

A Controllably Anisotropic Conductivity or Diffusion Phantom Constructed from Isotropic Layers

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Phantoms with controllable and well-defined anisotropy are needed to test methods for imaging electrical anisotropy. We developed and tested a phantom that had properties similar to a homogeneous anisotropic conductive medium. The phantom was constructed with alternate slices of isotropic gel having different conductivities. The degree of anisotropy in the phantom could be varied easily by changing the relative conductivity of the two gels. We tested the stability of several phantoms and found their properties were maintained for approximately 8 h following construction. The phantom has application to electrical impedance tomography, magnetic resonance electrical impedance tomography, EEG and ECG source imaging and diffusion tensor imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Baillet, S., J. C. Mosher, and R. M. Leahy. Electromagnetic brain mapping. IEEE Signal Process. Mag. 18:14–30, 2001.

    Article  Google Scholar 

  2. Boujraf, S., R. Luypaert, H. Eisendrath, and M. Osteaux. Echo planar magnetic resonance imaging of anisotropic diffusion in asparagus stems. Magn. Reson. Mater. Phys. Biol. Med. 13:82–90, 2001.

    Article  CAS  Google Scholar 

  3. Clerc, L. Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. 255:335–346, 1976.

    CAS  PubMed  Google Scholar 

  4. Değirmenci, E., and B. M. Eyüboğlu. Anisotropic conductivity imaging with MREIT using equipotential projection algorithm. Phys. Med. Biol. 52:7229–7242, 2007.

    Article  PubMed  Google Scholar 

  5. Fieremans, E., Y. De Deene, S. Delputte, M. S. Özdemir, Y. D’Asseler, J. Vlassenbroeck, et al. Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J. Magn. Reson. 190:189–199, 2008.

    Article  CAS  PubMed  Google Scholar 

  6. Geddes, L., and L. E. Baker. The specific resistance of biological materials: a compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. Comput. 5:271–293, 1967.

    CAS  Google Scholar 

  7. Hamamura, M. J., L. T. Muftuler, O. Birgul, and O. Nalcioglu. Tracking of sodium diffusion in agarose using MR-EIT. Proc. Int. Soc. Magn. Reson. Med. 13:756, 2005.

    Google Scholar 

  8. Klimas, A., K. Gorczewski, U. Klose, and Z. Drzazga. Preparation and validation of an easy-to-make organic DTI phantom. 41st Polish National Seminar on Nuclear Magnetic Resonance and Its Uses, Krakow, Poland, 2008.

  9. Komlosh, M. E., F. Horkay, R. Z. Freidlin, U. Nevo, Y. Assaf, and P. J. Basser. Detection of microscopic anisotropy in gray matter and in a novel tissue phantom using double pulsed gradient spin echo MR. J. Magn. Reson. 189:38–45, 2007.

    Article  CAS  PubMed  Google Scholar 

  10. Kun, S., and R. Peura. Effects of sample geometry and electrode configuration on measured electrical resistivity of skeletal muscle. IEEE Trans. Biomed. Eng. 47:163, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Leemans, A., J. Sijbers, M. Verhoye, A. Van der Linden, and D. van Dyck. A simulated phantom for diffusion tensor MRI fiber tracking. Advanced Concepts for Intelligent Vision Systems, Ghent, Belgium, 2–5 September 2003, pp. 281–285.

  12. Liehr, M., and J. Haueisen. Influence of anisotropic compartments on magnetic field and electric potential distributions generated by artificial current dipoles inside a torso phantom. Phys. Med. Biol. 53:245–254, 2008.

    Article  PubMed  Google Scholar 

  13. Lorenz, R., M. E. Bellemann, J. Hennig, and K. A. Il’yasov. Anisotropic phantoms for quantitative diffusion tensor imaging and fiber-tracking validation. Appl. Magn. Reson. 33:419–429, 2008.

    Article  CAS  Google Scholar 

  14. Mazzara, G. P., R. W. Briggs, Z. Wu, and B. G. Steinbach. Use of a modified polysaccharide gel in developing a realistic breast phantom for MRI. Magn. Reson. Imaging 14:639–648, 1996.

    Article  CAS  PubMed  Google Scholar 

  15. Oh, S. H. Electrical conductivity estimation from diffusion tensor and T2: a silk yarn phantom study. Proc. Int. Soc. Magn. Reson. Med. 14:3034, 2006.

    Google Scholar 

  16. Oh, T. I., H. Koo, K. H. Lee, S. M. Kim, J. Lee, S. W. Kim, et al. Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging. Physiol. Meas. 29(3):295–307, 2008.

    Article  PubMed  Google Scholar 

  17. Orgrezeanu, G., and A. Hartlep, inventors. Fiber tracking phantom. US Patent application 20060195030, 2006.

  18. Pascual-Marqui, R. D. Functional imaging with low resolution brain electromagnetic tomography (LORETA): a review. Meth. Find. Exp. Clin. Pharmacol. 24C:1–12, 2002.

    Google Scholar 

  19. Roth, B. J., D. Ko, I. R. von Albertini-Carletti, D. Scaffidi, and S. Sato. Dipole localization in patients with epilepsy using the realistically shaped head model. Electroencephalogr. Clin. Neurophysiol. 102:159–166, 1997.

    Article  CAS  PubMed  Google Scholar 

  20. Rullmann, M., A. Anwander, M. Dannhauer, S. K. Warfield, F. H. Duffy, and C. H. Wolters. EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model. NeuroImage 44(2):399–410, 2008.

    Article  PubMed  Google Scholar 

  21. Sadleir, R. J., and A. Argibay. Modeling skull electrical properties. Ann. Biomed. Eng. 35:1619–1722, 2007.

    Article  Google Scholar 

  22. Sadleir, R. J., and C. Henriquez. Estimation of cardiac bidomain parameters from extracellular measurement: two dimensional study. Ann. Biomed. Eng. 34(8):1289–1303, 2006.

    Article  CAS  PubMed  Google Scholar 

  23. Scifo, P., F. Dell’Acqua, G. Rizzo, M. Gilardi, and F. Fazio. A dedicated phantom for diffusion tensor imaging studies. Proc. Int. Soc. Magn. Reson. Med. 12:1203, 2004.

    Google Scholar 

  24. Seo, J. K., F. C. Pyo, C. Park, et al. Image reconstruction of anisotropic conductivity tensor distribution in MREIT: computer simulation study. Phys. Med. Biol. 49(18):4371–4382, 2004.

    Article  PubMed  Google Scholar 

  25. Tuch, D. S., V. J. Wedeen, A. M. Dale, J. S. George, and J. W. Belliveau. Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc. Natl. Acad. Sci. USA 98:11697–11701, 2001.

    Article  CAS  PubMed  Google Scholar 

  26. Walker, G. C., E. Berry, S. W. Smye, and D. S. Brettle. Materials for phantoms for terahertz pulsed imaging. Phys. Med. Biol. 49:N363–N369, 2004.

    Article  PubMed  Google Scholar 

  27. Watanabe, M., S. Aoki, Y. Masutani, O. Abe, N. Hayashi, T. Masumoto, H. Mori, H. Kabasawa, and K. Ohtomo. Flexible ex vivo phantoms for validation of diffusion tensor tractography on a clinical scanner. Radiat. Med. 24:605–609, 2006.

    Article  PubMed  Google Scholar 

  28. Wolters, C. H., A. Anwander, X. Tricoche, D. Weinstein, M. A. Koch, and R. S. Macleod. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. NeuroImage 30:813–826, 2006.

    Article  CAS  PubMed  Google Scholar 

  29. Woo, E. J., personal communication.

  30. Zhang, S. U. Quantification of simulated bleeding using a hemi array eight electrode electrical impedance tomography method, M.S. Thesis, University of Florida, 2006.

  31. Zhang, S. U., A. S. Tucker, S. Oh, and R. J. Sadleir. Quantification of simulated bleeding using a ‘hemiarray’ 8-electrode method. Physiol. Meas. 29:913–927, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant R01EB-002389 to RJS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalind J. Sadleir.

Appendix: Procedure for Making TX-151 Gels

Appendix: Procedure for Making TX-151 Gels

TX-151 gels suitable for use in these phantoms can be produced using the procedure below. The components are the same as those used in Mazzara et al.14 and Oh et al.,16 but quantities were adjusted to form a thicker gel. The original version of this formulation appears in Zhang.30 We measured the conductivity with x = 0 and 3 g and found the conductivities reported in Table 1 at 1 kHz.

  1. 1.

    Assemble ingredients in Table A.

    Table A Composition of TX-151 gels
  2. 2.

    Combine ingredients in a glass beaker and stir thoroughly using a glass stirrer (a handful of glass stirrers may be useful as the solution thickens).

  3. 3.

    Cover the solution using plastic film. Make some holes in the film to allow ventilation.

  4. 4.

    Microwave for 9 min (may vary with microwave). The solution is overheated if it begins bubbling or boiling. If so, allow to cool one minute before proceeding.

  5. 5.

    Carefully pour the hot mixture into the mold. Avoid mixing in air.

  6. 6.

    Cover the mold with plastic film and refrigerate for 4 h. The product is ready once it has solidified.

  7. 7.

    Wrap unused product with plastic wrap and keep refrigerated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadleir, R.J., Neralwala, F., Te, T. et al. A Controllably Anisotropic Conductivity or Diffusion Phantom Constructed from Isotropic Layers. Ann Biomed Eng 37, 2522–2531 (2009). https://doi.org/10.1007/s10439-009-9799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9799-6

Keywords

Navigation