Skip to main content
Log in

Measurement of Individual Red Blood Cell Motions Under High Hematocrit Conditions Using a Confocal Micro-PTV System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Developments in optical experimental techniques have helped in elucidating how blood flows through microvessels. Although initial developments were encouraging, studies on the flow properties of blood in microcirculation have been limited by several technical factors, such as poor spatial resolution and difficulty obtaining quantitative detailed measurements at such small scales. Recent advances in computing, microscopy, and digital image processing techniques have made it possible to combine a particle tracking velocimetry (PTV) system with a confocal microscope. We document the development of a confocal micro-PTV measurement system for capturing the dynamic flow behavior of red blood cells (RBCs) in concentrated suspensions. Measurements were performed at several depths through 100-μm glass capillaries. The confocal micro-PTV system was able to detect both translational and rotational motions of individual RBCs flowing in concentrated suspensions. Our results provide evidence that RBCs in dilute suspensions (3% hematocrit) tended to follow approximately linear trajectories, whereas RBCs in concentrated suspensions (20% hematocrit) exhibited transversal displacements of about 2% from the original path. Direct and quantitative measurements indicated that the plasma layer appeared to enhance the fluctuations in RBC trajectories owing to decreased obstruction in transversal movements caused by other RBCs. Using optical sectioning and subsequent image contrast and resolution enhancement, the system provides previously unobtainable information on the motion of RBCs, including the trajectories of two or more RBCs interacting in the same focal plane and RBC dispersion coefficients in different focal planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Abramoff, M., Magelhaes, P., Ram, S. 2004 Image Processing with Image J, Biophotonics Int. 11: 36-42.

    Google Scholar 

  2. Baker M., Wayland H. 1974 On-line volume flow rate and velocity profile measurement for blood in microvessels. Microvasc. Res. 7: 131-143.

    Article  PubMed  CAS  Google Scholar 

  3. Born G., Melling A., Whitelaw J. 1978 Laser Doppler microscope for blood velocity measurement. Biorheology 15: 163-172.

    PubMed  CAS  Google Scholar 

  4. Caro, C., T. Pedley, R. Schroter, and W. Seed (1978). The Mechanics of the Circulation. Oxford: Oxford University Press

    Google Scholar 

  5. Chien, S. 1970 Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168: 977-979.

    Article  PubMed  CAS  Google Scholar 

  6. Conchello J., Lichtman, J. 2005 Optical sectioning microscopy. Nat. Methods 2: 920–931.

    Article  PubMed  CAS  Google Scholar 

  7. Fahraeus, R., Lindqvist, T. 1931 The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96: 562-568.

    CAS  Google Scholar 

  8. Fischer T., Stohr-Lissen M, Schmid-Schonbein, H. 1978 The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. Science 202: 894-896.

    Article  PubMed  CAS  Google Scholar 

  9. Fujiwara, H., Ishikawa T., Lima, R., Matsuki, N., Imai, Y., Kaji, H., Nishizawa, M., Yamaguchi, T. 2009 Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel. J. Biomech., 42: 838-843.

    Article  PubMed  CAS  Google Scholar 

  10. Gaehtgens P., Meiselman H., Wayland H. 1970 Velocity profiles of human blood at normal and reduced hematocrit in glass tubes up to 130 μ diameter. Microvasc. Res. 2: 13-23.

    Article  PubMed  CAS  Google Scholar 

  11. Goldsmith H. 1971 Red cell motions and wall interactions in tube flow, Fed. Proc. 30: 1578-1588.

    PubMed  CAS  Google Scholar 

  12. Goldsmith H. 1971 Deformation of human red cells in tube flow, Biorheology 7: 235-242.

    PubMed  CAS  Google Scholar 

  13. Goldsmith, H., Marlow, J. 1979 Flow behavior of erythrocytes. II. Particles motions in concentrated suspensions of ghost cells, J. Colloid Interface Sci. 71: 383-407.

    Article  Google Scholar 

  14. Goldsmith, H., Turitto, V. 1986 Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report-Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb. Haemost. 55: 415–435.

    PubMed  CAS  Google Scholar 

  15. Inoue, S., and T. Inoue (2002) Direct-view high-speed confocal scanner: the CSU-10. In: Matsumoto B (ed.), Cell Biological Applications of Confocal Microscopy. San Diego: Academic Press, pp. 87–127.

    Chapter  Google Scholar 

  16. Ishikawa, T. and Pedley, T. 2007 Diffusion of swimming model micro-organisms in a semi-dilute suspensions. J. Fluid Mech., 588: 437-462.

    Google Scholar 

  17. Kinoshita, H., Kaneda, S., Fujii, T.,Oshima, M. 2007 Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab Chip 7: 338-346.

    Article  PubMed  CAS  Google Scholar 

  18. Lima, R. Analysis of the blood flow behavior through microchannels by a confocal micro-PIV/PTV system. Ph.D. Thesis, Tohoku University, Japan, 2007.

  19. Lima, R., Ishikawa T., Imai, Y., Takeda, M., Wada, S., Yamaguchi, T. 2008 Radial dispersion of red blood cells in blood flowing through glass capillaries: role of hematocrit and geometry. J. Biomech. 41: 2188-2196.

    Article  PubMed  Google Scholar 

  20. Lima, R., Wada, S., Takeda, M., Tsubota, K., Yamaguchi, T. 2007 In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles. J. Biomech. 40: 2752-2757.

    Article  PubMed  Google Scholar 

  21. Lima, R., Wada, S., Tanaka, S., Takeda, M., Ishikawa, T., Tsubota, K., Imai, Y., Yamaguchi, T. 2008 In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed. Microdevices, 10: 153-167.

    Article  PubMed  Google Scholar 

  22. Lima, R., Wada, S., Tsubota, K.,Yamaguchi, T. 2006 Confocal micro-PIV measurements of three dimensional profiles of cell suspension flow in a square microchannel. Meas. Sci. Technol. 17: 797-808.

    Article  CAS  Google Scholar 

  23. Meijering E., Smal I., Danuser G. 2006 Tracking in Molecular Bioimaging, IEEE Signal Process. Mag., 23: 46-53.

    Article  Google Scholar 

  24. Meinhart C, Wereley S., Gray H. 2000 Volume illumination for two-dimensional particle image velocimetry. Meas. Sci. Technol. 11: 809-814.

    Article  CAS  Google Scholar 

  25. Meinhart C, Wereley S, Santiago J. 1999 PIV measurements of a microchannel flow. Exp. Fluids 27: 414-419.

    Article  Google Scholar 

  26. Miyazaki, H. and Yamaguchi, T. 2003 Formation and destruction of primary thrombi under the influence of blood flow and von Willebrand factor analysed by a D. E. M., Biorheology 40: 265-272.

    PubMed  CAS  Google Scholar 

  27. Nash, G., Meiselman, H. 1983 Red cell and ghost viscoelasticity. Effects of hemoglobin concentration and in vivo aging. Biophys. J. 43: 63-73.

    Article  PubMed  CAS  Google Scholar 

  28. Park J, Choi C, and Kihm K 2004 Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp. Fluids 37: 105-119.

    Google Scholar 

  29. Parthasarathi A., Japee S., Pittman R. 1999 Determination of red blood cell velocity by video shuttering and image analysis. Ann. Biomed. Eng. 27: 313-325.

    Article  PubMed  CAS  Google Scholar 

  30. Schmid-Schonbein, H., Wells, R. 1969 Fluid drop-like transition of erythrocytes under shear. Science 165: 288-291.

    Article  Google Scholar 

  31. Shiga, T., Maeda N., Kon K. 1990 Erythrocyte rheology. Crit. Rev. Oncol. Hematol. 10: 9-48.

    Article  PubMed  CAS  Google Scholar 

  32. Sugii Y, Okuda R, Okamoto K, Madarame H 2005 Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique. Meas. Sci. Technol. 16: 1126-1130.

    Article  CAS  Google Scholar 

  33. Tanaani T, Otsuki S, Tomosada N, Kosugi Y, Shimizu M., Ishida H. 2002 High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Appl. Opt. 41: 4704-4708.

    Article  Google Scholar 

  34. Tsubota, K., Wada, S., Yamaguchi, T. 2006 Particle method for computer simulation of red blood cell motion in blood flow. Comput. Methods Programs Biomed. 83: 139-146.

    Article  PubMed  Google Scholar 

  35. Uijttewaal W., Nijhof E., Heethaar R. 1994 Lateral migration of blood cells and microspheres in two-dimensional Poiseuille flow: a laser Doppler study. J. Biomech. 27: 35-42.

    Article  PubMed  CAS  Google Scholar 

  36. Vennemann P., K. Kiger, R. Lindken, B. Groenendijk, S. Stekelenburg-de Vos, T. Hagen, N. Ursem, R. Poelmann, J. Westerweel, B. Hierk 2006 In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. J. Biomech. 39: 1191-1200.

    Article  PubMed  Google Scholar 

  37. Wootton, D., Ku D. 1999 Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1: 299-329.

    Article  PubMed  CAS  Google Scholar 

  38. Yamaguchi, T., Ishikawa, T., Tsubota, K., Imai, Y., Nakamura M., Fukui T. 2006 Computational blood flow analysis—new trends and methods. J. Biomech. Sci. Eng. 1: 29-50.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the following grants: International Doctoral Program in Engineering from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), “Revolutionary Simulation Software (RSS21)” next-generation IT program of MEXT; Grants-in-Aid for Scientific Research from MEXT and JSPS Scientific Research in Priority Areas (768) “Biomechanics at Micro- and Nanoscale Levels”, “Scientific Research (S) No. 19100008”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Lima.

Electronic supplementary material

Below are the links to the electronic supplementary materials.

Supplementary material 1 (MOV 6115 kb)

Supplementary material 2 (MOV 427 kb)

Supplementary material 3 (MOV 257 kb)

Supplementary material 4 (MOV 577 kb)

Supplementary material 5 (MOV 1615 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, R., Ishikawa, T., Imai, Y. et al. Measurement of Individual Red Blood Cell Motions Under High Hematocrit Conditions Using a Confocal Micro-PTV System. Ann Biomed Eng 37, 1546–1559 (2009). https://doi.org/10.1007/s10439-009-9732-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9732-z

Keywords

Navigation