Skip to main content

Advertisement

Log in

The Mandibular Cartilage Metabolism is Altered by Damaged Subchondral Bone from Traumatic Impact Loading

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) in the temporomandibular joint (TMJ) is a degenerative disease caused by excessive external loading. Recently, it was reported that the damage in the mineralized subchondral bone caused by traumatic impact-loading is responsible for the initiation and progression of cartilage degeneration. Thus far, we have hypothesized that cytokines released from damaged subchondral bone from impact-loading affect the cartilage catabolism under pathological conditions. An impactor of 200 gw was dropped onto the top of a porcine mandibular condyle. After organ culture for 2 days, we investigated the association between the subchondral bone and cartilage using histological and biochemical experiments. The impact-loading induced the expression of IL-1β immunohistochemically and prominently up-regulated IL-1α and IL-1β mRNA levels in subchondral bone. We confirmed a significant decrease in type II collagen and aggrecan mRNA expressions in chondrocytes by co-culture with osteoblasts after impact-loading, and significant increase in mRNA and protein expressions of IL-1β in subchondral osteoblasts from impact-loaded subchondral bone. The mRNA expressions of type II collagen, aggrecan, and type X collagen in chondrocytes were decreased significantly by the co-culture with osteoblasts pre-treated by IL-1β, -6, and TNF-α. Among them, osteoblasts pre-treated by IL-1β affected chondrocytes most strongly. It was also shown that IL-1β-treated osteoblasts enhanced the MMP-1 mRNA level most markedly in chondrocytes among the four cytokines. These results suggest that the TMJ subjected to impact-loading can increase directly IL-1β synthesis in the subchondral region, subsequently altering the metabolism of adjacent cartilage and may eventually resulting in the onset and progression of TMJ-OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Arend, W.P. Interleukin-1 receptor antagonist. Adv Immunol. 54:167-227, 1993. doi:10.1016/S0065-2776(08)60535-0.

    Article  PubMed  CAS  Google Scholar 

  2. Arnett, G.W., Milam, S.B. and Gottesman, L. Progressive mandibular retrusion–idiopathic condylar resorption. Part I. Am J Orthod Dentofacial Orthop. 110:8-15, 1996. doi:10.1016/S0889-5406(96)70081-1.

    Article  PubMed  CAS  Google Scholar 

  3. Arnett, G.W., Milam, S.B. and Gottesman, L. Progressive mandibular retrusion–idiopathic condylar resorption. Part II. Am J Orthod Dentofacial Orthop. 110:117-127, 1996. doi:10.1016/S0889-5406(96)70099-9.

    Article  PubMed  CAS  Google Scholar 

  4. Borden, P., Solymar, D., Sucharczuk, A., Lindman, B., Cannon, P., and Heller, R.A. Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes. J Biol Chem. 271:23577-81, 1996. doi:10.1074/jbc.271.38.23577.

    Article  PubMed  CAS  Google Scholar 

  5. Burgin, L.V., and Aspden,.RM. A drop tower for controlled impact testing of biological tissues. Med Eng Phys. 29:525-30, 2007. doi:10.1016/j.medengphy.2006.06.002.

    Article  PubMed  Google Scholar 

  6. Burgin, L.V., and Aspden, R.M. Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone. J Mater Sci Mater Med. 19:703-11, 2008. doi:10.1007/s10856-007-3187-2.

    Article  CAS  Google Scholar 

  7. Burr, D.B. The importance of subchondral bone in the progression of osteoarthritis. J Rheumatol Suppl. 31:77-80, 2004.

    Google Scholar 

  8. Burr, D.B., and Radin, E.L. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum Dis Clin North Am. 29:675-85, 2003. doi:10.1016/S0889-857X(03)00061-9.

    Article  PubMed  Google Scholar 

  9. Donohue, J.M., Buss, D., Oegema, T.R. Jr, and Thompson, R.C. Jr. The effects of indirect blunt trauma on adult canine articular cartilage. J Bone Joint Surg Am. 65:948-57, 1983.

    PubMed  CAS  Google Scholar 

  10. Duda, G.N., Eilers, M., Loh, L., Hoffman, J.E., Kääb, M., and Schaser, K. Chondrocyte death precedes structural damage in blunt impact trauma. Clin Orthop Relat Res. 393:302-9, 2001. doi:10.1097/00003086-200112000-00035.

    Article  PubMed  Google Scholar 

  11. Eberhardt AW, Lewis JL, and Keer LM. Normal contact of elastic spheres with two elastic layers as a model of joint articulation. J Biomech Eng. 113:410-7, 1991. doi:10.1115/1.2895420.

    Article  PubMed  CAS  Google Scholar 

  12. Eberhardt AW, Keer LM, Lewis JL, and Vithoontien V. An analytical model of joint contact. J Biomech Eng. 112:407-13, 1990. doi:10.1115/1.2891204.

    Article  PubMed  CAS  Google Scholar 

  13. Fernandes, J.C., Martel-Pelletier, J., and Pelletier, J.P. The role of cytokines in osteoarthritis pathophysiology. Biorheology 39:237-46, 2002.

    PubMed  CAS  Google Scholar 

  14. Gallo, L.M., Fushima, K., Palla, S. Mandibular helical axis pathways during mastication. J Dent Res. 79:1566-72, 2000. doi:10.1177/00220345000790080701.

    Article  PubMed  CAS  Google Scholar 

  15. Goldring, M.B. The role of the chondrocyte in osteoarthritis [review]. Arthritis Rheum. 43:1916-26, 2000. doi:10.1002/1529-0131(200009)43:9<1916::AID-ANR2>3.0.CO;2-I.

    Article  PubMed  CAS  Google Scholar 

  16. Jeffrey, J.E., Gregory, D.W., and Aspden, R.M. Matrix damage and chondrocyte viability following a single impact load on articular cartilage. Arch Biochem Biophys. 322:87-96, 1995. doi:10.1006/abbi.1995.1439.

    Article  PubMed  CAS  Google Scholar 

  17. Jeffrey, J.E., Thomson, L.A., and Aspden, R.M. Matrix loss and synthesis following a single impact load on articular cartilage in vitro. Biochim Biophys Acta. 15:223-32, 1997.

    Google Scholar 

  18. Jennings, L., Wu, L., King, KB., Hammerle, H., Cs-Szabo, G., and Mollenhauer, J. The effects of collagen fragments on the extracellular matrix metabolism of bovine and human chondrocytes. Connect Tissue Res. 42:71-86, 2001. doi:10.3109/03008200109014250.

    Article  PubMed  CAS  Google Scholar 

  19. Hu, X., Ho, H.H., Lou, O., Hidaka, C. and Ivashkiv, L.B. Homeostatic role of interferons conferred by inhibition of IL-1-mediated inflammation and tissue destruction. J Immunol. 175:131-8, 2005.

    PubMed  CAS  Google Scholar 

  20. Lahm, A., Uhl, M., Erggelet, C., Haberstroh, J., and Mrosek, E. Articular cartilage degeneration after acute subchondral bone damage. Acta Ortho Scand. 75:762-767, 2004. doi:10.1080/00016470410004166.

    Article  Google Scholar 

  21. Lahm, A., Kreuz, P.C., Oberst, M., Haberstroh, J., Uhl, M., and Maier, D. Subchondral and trabecular bone remodeling in canine experimental osteoarthritis. Arch Orthop Trauma Surg. 126:582-7, 2006. doi:10.1007/s00402-005-0077-2.

    Article  PubMed  CAS  Google Scholar 

  22. Lajeunesse, D., and Reboul, P. Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling. Curr Opin Rheumatol. 15:628-33, 2003. doi:10.1097/00002281-200309000-00018.

    Article  PubMed  Google Scholar 

  23. Luder, H.U., Leblond, C.P., and von der Mark, K. Cellular stages in cartilage formation as revealed by morphometry, radioautography and type II collagen immunostaining of the mandibular condyle from weanling rats. Am J Anat. 182:197-214, 1988. doi:10.1002/aja.1001820302.

    Article  PubMed  CAS  Google Scholar 

  24. Martel-Pelletier, J., Alaaeddine, N., and Pelletier, JP. Cytokines and their role in the pathophysiology of osteoarthritis. Front Biosci. 15;4:D694-703, 1999. doi:10.2741/Martel.

    Article  Google Scholar 

  25. Meyer, F.A., Yaron, I. and Yaron, M. Synergistic, additive, and antagonistic effects of interleukin-1 beta, tumor necrosis factor alpha, and gamma-interferon on prostaglandin E, hyaluronic acid, and collagenase production by cultured synovial fibroblasts. Arthritis Rheum. 33:1518-25, 1990. doi:10.1002/art.1780331009.

    Article  PubMed  CAS  Google Scholar 

  26. Mok, S.S., Masuda, K., Häuselmann, H.J., Aydelotte, M.B., and Thonar, E.J. Aggrecan synthesized by mature bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools. J Biol Chem. 269:33021-7, 1994.

    PubMed  CAS  Google Scholar 

  27. Moo, V., Sieper, J., Herzog, V., and Müller, B.M. Regulation of expression of cytokines and growth factors in osteoarthritic cartilage explants. Clin Rheumato. 20:353-8, 2001. doi:10.1007/s100670170025.

    Article  PubMed  CAS  Google Scholar 

  28. Moos, V., Fickert, S., Muller, B., Weber, U., and Sieper, J. Immunohistological analysis of cytokine expression in human osteoarthritic and healthy cartilage. J Rheumatol. 26:870-87, 1999.

    PubMed  CAS  Google Scholar 

  29. Newton, R.C. Effect of interferon on the induction of human monocyte secretion of interleukin-1 activity. Immunology. 56:441-9, 1985.

    PubMed  CAS  Google Scholar 

  30. Norman, J.E. Post-traumatic disorders of the jaw joint. Ann R Coll Surg Engl. 64:29-36, 1982.

    PubMed  CAS  Google Scholar 

  31. Ohno, S., Ohno-Nakahara, M., Knudson, C.B., and Knudson, W. Induction of MMP-3 by hyaluronan oligosaccharides in temporomandibular joint chondrocytes. J Dent Res. 84:1005-9, 2005. doi:10.1177/154405910508401107.

    Article  PubMed  CAS  Google Scholar 

  32. Radin, E.L., and Rose, R.M. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Rel Res. 213:34–40, 1986.

    Google Scholar 

  33. Sanchez, C., Deberg, M.A., Piccardi, N., Msika, P., Reginster, J.Y., and Henrotin, Y.E. Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, -1beta and oncostatin M pre-treated non-sclerotic osteoblasts. Osteoarthritis Cartilage. 13:979-87, 2005. doi:10.1016/j.joca.2005.03.008.

    Article  PubMed  CAS  Google Scholar 

  34. Schlaak, J.F., Pfers, I., Meyer Zum Büschenfelde, K.H., and Märker-Hermann, E. Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol. 14:155-62, 1996.

    PubMed  CAS  Google Scholar 

  35. Schuerwegh, A.J., Dombrecht, E.J., Stevens, W.J., Van Offel, J.F., Bridts, C.H., and De Clerck, L.S. Influence of pro-inflammatory (IL-1 alpha, IL-6, TNF-alpha, IFN-gamma) and anti-inflammatory (IL-4) cytokines on chondrocyte function. Osteoarthritis Cartilage 11:681-7, 2003. doi:10.1016/S1063-4584(03)00156-0.

    Article  PubMed  CAS  Google Scholar 

  36. Steed, P.A., and Wexler, G.B. Temporomandibular disorders-traumatic etiology vs. nontraumatic etiology. A clinical and methodological inquiry into symptomatology and treatment outcomes. Cranio. 19:188-94, 2001.

    PubMed  CAS  Google Scholar 

  37. Tanaka, E., and van Eijden, T. Biomechanical behavior of the temporomandibular joint disc. Crit Rev Oral Biol Med. 14:138-50, 2003. doi:10.1177/154411130301400207.

    Article  PubMed  Google Scholar 

  38. Tanaka, E., Yamano, E., Dalla-Bona, D.A., Watanabe, M., Inubushi, T., Shirakura, M., Sano, R., Takahashi, K., van Eijden, T., and Tanne, K. Dynamic compressive properties of the mandibular condylar cartilage. J Dent Res. 85:571-5, 2006. doi:10.1177/154405910608500618.

    Article  PubMed  CAS  Google Scholar 

  39. Towle, C.A., Hung, H.H., Bonassar, L.J., Treadwell, B.V., and Mangham, D.C. Detection of interleukin-1 in the cartilage of patients with osteoarthritis: a possible autocrine/paracrine role in pathogenesis. Osteoarthritis Cartilage 5:293-300, 1997. doi:10.1016/S1063-4584(97)80008-8.

    Article  PubMed  CAS  Google Scholar 

  40. van Ruijven, L.J., Giesen, E.B., and van Eijden, T.M. Mechanical significance of the trabecular microstructure of the human mandibular condyle. J Dent Res. 81:706-10, 2002. doi:10.1177/154405910208101010.

    Article  PubMed  Google Scholar 

  41. Westacott, C.I., Whicher, J.T., Barnes, I.C., Thompson, D., Swan, A.J. and Dieppe, P.A. Synovial fluid concentration of five different cytokines in rheumatic diseases. Ann Rheum Dis. 49:676-81, 1990. doi:10.1136/ard.49.9.676.

    Article  PubMed  CAS  Google Scholar 

  42. Wilbrink, B., Nietfeld, J.J., den Otter, W., van Roy, J.L., Bijlsma, J.W., and Huber-Bruning, O. Role of TNF alpha, in relation to IL-1 and IL-6 in the proteoglycan turnover of human articular cartilage. Br J Rheumatol. 30:265-71, 1991. doi:10.1093/rheumatology/30.4.265.

    Article  PubMed  CAS  Google Scholar 

  43. Williams, J.M., Zhang, J., Kang, H., Ummadi, V., and Homandberg, G.A. The effects of hyaluronic acid on fibronectin fragment mediated cartilage chondrolysis in skeletally mature rabbits. Osteoarthritis Cartilage 11:44-49, 2003. doi:10.1053/joca.2002.0864.

    Article  PubMed  CAS  Google Scholar 

  44. Zarb, G.A., and Carlsson, G.E. Temporomandibular disorders: osteoarthritis. J Orofac Pain 13:295-306, 1999.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-aid (# 18390554 and # 20791578) for Scientific Research from the Ministry of Education, Science, Sports, and Culture in Japan. This work was also carried out with the courtesy of the Research Center for Molecular Medicine, Hiroshima University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuaki Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YY., Tanaka, N., Ohkuma, S. et al. The Mandibular Cartilage Metabolism is Altered by Damaged Subchondral Bone from Traumatic Impact Loading. Ann Biomed Eng 37, 1358–1367 (2009). https://doi.org/10.1007/s10439-009-9696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9696-z

Keywords

Navigation