Skip to main content

Advertisement

Log in

Transit Time, Residence Time, and the Rate of Approach to Steady State for Solute Transport During Peritoneal Dialysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mean transit time (MTT) and mean residence time (MRT) for solutes of low and middle molecular mass passing a system by convective–diffusive transport were calculated for the system of blood capillaries and lymphatic vessels within a tissue layer and dialysis fluid surrounding the tissue, i.e., the system with possible inflow and outflow of solutes through its surface and through the source/sink distributed within it. The general formulas were derived for MTT and MRT for various directions of the net solute flow (e.g., absorption of the solute from dialysis fluid to blood or removal of the solute from blood to dialysis fluid). MRT was calculated for diffusive transport of small and middle molecular weight solutes, and was 20 min for absorption of small molecules from dialysis fluid; however, for middle molecules MRT was increased up to 50 min. MRT for transport from blood to dialysis fluid was considerably shorter than in the opposite direction, especially for thin tissue layers. Furthermore, numerical simulations showed that the rates at which the system approaches the steady state were shorter than their theoretical estimations by MRT for absorption from dialysis fluid. The analysis was possible due to the application of the distributed model of peritoneal dialysis, which represents the real geometric characteristics of the transport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Arridge S. R., M. Schweiger 1995 Direct calculation of the moments of the distribution of photon time of flight in the tissue with finite element method. Appl. Opt. 34(15):2683–2687

    Article  Google Scholar 

  2. Bassingthwaighte, J. B. and C. A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature. In: Handbook of Physiology – The Cardiovascular System IV, Vol 4. Microcirculation, edited by S. R. Geiger, C. C. Michel, J. R. Pappenheimer, and E. M. Renkin. Bethesda, MD: American Physiological Society, 1984

  3. Collins J. 1981 Inert gas exchange of subcutaneous and intraperitoneal gas pockets in piglets. Respir. Physiol. 46:391–404. doi:10.1016/0034-5687(81)90134-1

    Article  PubMed  CAS  Google Scholar 

  4. Dedrick R. L., M. F. Flessner, J. M. Collins, J. S. Schulz 1982 Is the peritoneum a membrane? ASAIO J. 5:1–8

    Google Scholar 

  5. Flessner M. F., R. L. Dedrick 2000 Intraperitoneal chemotherapy In: Gokal R., R. Khanna, R. T. Krediet, K. D. Nolph (eds) Textbook of Peritoneal Dialysis. Dordrecht: Kluwer

    Google Scholar 

  6. Flessner M. F., R. L. Dedrick, J. C. Reynolds 1992 Bidirectional peritoneal transport of immunoglobulin in rats: tissue concentration profiles. Am. J. Physiol. 263(1 Pt 2):F15–23

    PubMed  CAS  Google Scholar 

  7. Flessner M. F., R. L. Dedrick, J. S. Schultz 1984 A distributed model of peritoneal-plasma transport: theoretical considerations. Am. J. Physiol. 246(4 Pt 2):R597–607

    PubMed  CAS  Google Scholar 

  8. Flessner M. F., J. D. Fenstermacher, R. L. Dedrick, R. G. Blasberg 1985 A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am. J. Physiol. 248(3 Pt 2):F425–435

    PubMed  CAS  Google Scholar 

  9. Flessner M. F., J. Lofthouse, R. Zakaria el 1997 In vivo diffusion of immunoglobulin G in muscle: effects of binding, solute exclusion, and lymphatic removal. Am. J. Physiol. 273(6 Pt 2):H2783–2793

    PubMed  CAS  Google Scholar 

  10. Gupta E., M. G. Wientjes, J. L. Au 1995 Penetration kinetics of 2’,3’-dideoxyinosine in dermis is described by the distributed model. Pharm. Res. 12(1):108–112. doi:10.1023/A:1016298906589

    Article  PubMed  CAS  Google Scholar 

  11. Hardt S. L. 1981 The diffusion transit time; a simple derivation. Bull. Math. Biol. 45:89–99

    Google Scholar 

  12. Heimbürger O. 2005 Peritoneal physiology. In: Pereira B., M. Sayegh, P. Blake (eds) Chronic Kidney Disease, Dialysis, and Transplantation. Philadelphia: Elsevier. 491–509

    Google Scholar 

  13. Liebert A., H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, H. Rinneberg 2003 Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons. Appl. Opt. 42(28):5785–5792. doi:10.1364/AO.42.005785

    Article  PubMed  CAS  Google Scholar 

  14. Liebert A., H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, H. Rinneberg 2004 Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of flight of photons. Appl. Opt. 43(15):3037–3047. doi:10.1364/AO.43.003037

    Article  PubMed  Google Scholar 

  15. Patlak C. S., J. D. Fenstermacher 1975 Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am. J. Physiol. 229(4):877–884

    PubMed  CAS  Google Scholar 

  16. Segel L. A. 1980 Mathematical Models in Molecular and Cellular Biology Cambridge: Cambridge University Press

    Google Scholar 

  17. Stachowska-Pietka J., J. Waniewski, M. F. Flessner, B. Lindholm 2006 Distributed model of peritoneal fluid absorption. Am. J. Physiol. Heart Circ. Physiol. 291(4):H1862–1874. doi:10.1152/ajpheart.01320.2005

    Article  PubMed  CAS  Google Scholar 

  18. Stachowska-Pietka J., J. Waniewski, M. F. Flessner, B. Lindholm 2007 A distributed model of bidirectional protein transport during peritoneal fluid absorption. Adv. Perit. Dial. 23:23–27

    PubMed  CAS  Google Scholar 

  19. Waniewski J. 2001 Physiological interpretation of solute transport parameters for peritoneal dialysis. J. Theor. Med. 3:177–190

    Google Scholar 

  20. Waniewski J. 2002 Distributed modeling of diffusive solute transport in peritoneal dialysis. Ann. Biomed. Eng. 30(9):1181–1195. doi:10.1114/1.1519264

    Article  PubMed  Google Scholar 

  21. Waniewski J. 2006 Mathematical modeling of fluid and solute transport in hemodialysis and peritoneal dialysis. J. Membr. Sci. 274:24–37. doi:10.1016/j.memsci.2005.11.038

    Article  CAS  Google Scholar 

  22. Waniewski J. 2007 Mean transit time and mean residence time for linear diffusion-convection-reaction transport system. Comput. Math. Methods Med. 8(1):37–49. doi:10.1080/17486700701298293

    Article  Google Scholar 

  23. Waniewski A., V. Dutka, J. Stachowska-Pietka, R. Cherniha 2007 Distributed modeling of glucose-induced osmotic flow. Adv. Perit. Dial. 23:2–6

    PubMed  CAS  Google Scholar 

  24. Waniewski J., T. Wang, O. Heimburger, A. Werynski, B. Lindholm 2000 Discriminative impact of ultrafiltration on peritoneal protein transport. Perit. Dial. Int. 20(1):39–46

    PubMed  CAS  Google Scholar 

  25. Waniewski J., A. Werynski, B. Lindholm 1999 Effect of blood perfusion on diffusive transport in peritoneal dialysis. Kidney Int. 56(2):707–713. doi:10.1046/j.1523-1755.1999.00595.x

    Article  PubMed  CAS  Google Scholar 

  26. Wientjes M. G., R. A. Badalament, R. C. Wang, F. Hassan, J. L. Au 1993 Penetration of mitomycin C in human bladder. Cancer Res. 53(14):3314–3320

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Waniewski.

Appendix

Appendix

The description of diffusive-convective solute flux across the capillary bed per unit capillary surface area, q SBT, as a function of perfusion rate, q B, and capillary permeability surface may be given by the following formula25:

$$ q_{{\rm SBT}} = k_{{\rm cB}} C_{\rm B} - k_{{\rm cT}} C, $$
(A1)

where

$$ k_{{\rm cB}} = q_{\rm B} {\left[ {1 - {\left( {1 - \frac{{q_{\rm V} }} {{q_{\rm B} }}} \right)}^{{cl_{\rm B} /q_{\rm V} }} } \right]}, $$
(A2)
$$ k_{{\rm cT}} = cl_{\rm T} \frac{{k_{{\rm cB}} - q_{\rm V} }} {{cl_{\rm B} - q_{\rm V} }}, $$
(A3)

where cl B = Pa + Sq V a(1 − F), Cl T = Pa − Sq V aF, q B is the perfusion rate, i.e., the blood flow at the inlet to the capillary bed per unit volume of the tissue, C B is the solute concentration in blood at the entrance to the capillary bed, C is the solute concentration in the tissue, P is the diffusive permeability of the capillary wall per unit capillary surface area, a is the density of capillary wall surface area, S is the solute sieving coefficient in the capillary wall, q V is the fluid ultrafiltration rate across the capillary wall per unit capillary surface area, and F is the weighing factor in the mean solute concentration in the capillary wall.21,25

If ultrafiltration is negligible, q V = 0, then \( cl_{{\text{B}}} {\text{(}}q_{{\text{V}}} = 0{\text{)}} = cl_{{\text{T}}} {\text{(}}q_{{\text{V}}} = 0{\text{)}} = Pa. \) Therefore, Eqs. (A2) and (A3) for q V = 0 yield that k cB0 = k cT0 = Eq B, where

$$ E = 1 - \exp\left(-P_{\rm c} a_{\rm c}/q_{\text{Bin}}\right). $$
(A4)

If \( P_{{\text{c}}} a_{{\text{c}}} \ll q_{{\text{B}}} , \) then from Eq. (A4): k cB ≈ P c a c, i.e., diffusive transport is permeability limited; on the other hand, if \( P_{{\text{c}}} a_{{\text{c}}} \gg q_{{\text{B}}} ,\) then from Eq. (A4): k cB ≈ q B, i.e., diffusive transport is blood flow limited.25

Combining the solute flux through the capillary wall with lymphatic absorption from the tissue one gets the net solute flux to the tissue per unit tissue volume, q S:

$$ q_{\rm S} = q_{{\rm SBT}} - Cq_{\rm L} = k_{{\rm BT}} C_{\rm B} - k_{{\rm TBL}} C = k_{{\rm TBL}} {\left( {\kappa C_{\rm B} - C} \right)}, $$
(A5)

where q L is the density of lymphatic absorption flow, k BT = k cB, k TBL = k cT + q L, and κ = k BT/k TBL.

Values of the parameters used in the distributed model were presented and discussed in several papers. To provide some examples of numerical outcomes from the distributed model we assume the same general relationships between local transport parameters and solute molecular weight as in some previous studies. For hydrophilic solutes of the size ranging from M W = 60 (urea) to 5000 (inulin), diffusive permeability through the capillary wall, P, was described as a function of the molecular weight (M W): P = 296 × M W −0.63 × 10−6 cm/s,4,20 and the density of the capillary surface area, a, was assumed to be equal to 70 cm2 per 1 g of the tissue. Blood perfusion, q B, was 15 mL/min/g.25 Tissue diffusivity, D T, for small hydrophilic solutes was described as the function of molecular weight (M W): D T = 0.0036 × 10.18 × M W −0.45 × 10−5 cm2/s,4,20 and S T was assumed 1. The solute void volume fraction, θ, was assumed the same as the interstitial fluid void volume fraction (inflated over the equilibrium value by increased interstitial hydrostatic pressure due to the inflow of dialysis fluid into the peritoneal cavity) and equal to 0.3.17. The solute lymphatic absorption with the rate constant, q L, and the convective solute transport with net ultrafiltration from the capillary bed at the rate q V were considered negligible compared to the diffusive transport of small and middle molecules across the capillary wall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waniewski, J. Transit Time, Residence Time, and the Rate of Approach to Steady State for Solute Transport During Peritoneal Dialysis. Ann Biomed Eng 36, 1735–1743 (2008). https://doi.org/10.1007/s10439-008-9544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9544-6

Keywords

Navigation