Skip to main content
Log in

Outflow Boundary Conditions for Arterial Networks with Multiple Outlets

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Simulation of blood flow in three-dimensional geometrically complex arterial networks involves many inlets and outlets and requires large-scale parallel computing. It should be based on physiologically correct boundary conditions, which are accurate, robust, and simple to implement in the parallel framework. While a secondary closure problem can be solved to provide approximate outflow conditions, it is preferable, when possible, to impose the clinically measured flow rates. We have developed a new method to incorporate such measurements at multiple outlets, based on a time-dependent resistance boundary condition for the pressure in conjunction with a Neumann boundary condition for the velocity. Convergence of the numerical solution for the specified outlet flow rates is achieved very fast at a computational complexity comparable to the widely used Resistance or Windkessel boundary conditions. The method is verified using a patient-specific cranial vascular network involving 20 arteries and 10 outlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

References

  1. Baek, H., M. V. Jayaraman, and G. E. Karniadakis. Distribution of WSS on the internal carotid artery with an aneurysm: a CFD sensitivity study. IMECE2007, 11–15 November, Seattle, WA, 2007

  2. Cebral, J. R., R. Löhner, O. Soto, P. L. Choyke, and P. J. Yim. Patient-specific simulation of carotid artery stenting using computational fluid dynamics. Lecture Notes in Computer Sciences, Vol. 2208. Springer, Berlin, 2001, pp. 153–160

  3. Dong S., Karniadakis G. E. (2004) Dual-level parallelism for high-order CFD methods. Parallel Comput. 30:1–20

    Article  Google Scholar 

  4. Dong S., Karniadakis G. E., Karonis N. T. (2005) Cross-site computations on the TeraGrid. Comput. Sci. Eng. 7(5):14–23

    Article  Google Scholar 

  5. Fischer P. F., Loth F., Lee S. E., Lee S.W., Smith D., Bassiouny H. (2007) Simulation of High Reynolds Number Vascular Flows. CMAME 196:3049–3060

    Google Scholar 

  6. Formaggia L., Gerbeau J. F., Nobile F., Quarteroni A. (2002) Numerical treatment of defective boundary conditions for the Navier-Stokes equations. SIAM J. Numer. Anal. 40(1):376–401

    Article  Google Scholar 

  7. Formaggia L., Gerbeaum J. F., Nobile F., Quarteroni A. (2001) On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191:561–582

    Article  Google Scholar 

  8. Formaggia L., Lamponi D., Tuveri M., Veneziani A. (2006) Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput. Methods Biomech. Biomed. Eng. 9(5):273–288

    Article  Google Scholar 

  9. Formaggia L., Nobile F., Quarteroni A., Veneziani A. (2004) Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Visual. Sci. 2(2–3):75–83

    Google Scholar 

  10. Gibbons C. A., Shadwick R. E. (1991) Circulatory mechanics in the Toad Bufo Marinus: II. Haemodynamics of the arterial Windkessel. J. Exp. Biol. 158:291–306

    Google Scholar 

  11. Heywood J. G., Rannacher R., Turek S. (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22:325–352

    Article  Google Scholar 

  12. Karniadakis G. E., Israeli M., Orszag S. A. (1991) High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97:414–443

    Article  Google Scholar 

  13. Karniadakis G. E., and S. J. Sherwin. Spectral/hp Element Methods for CFD, 2nd ed. Oxford: Oxford University Press, 650 pp., 2005

  14. Mills C. J., Gabe I. T., Gault D., Mason T., Ross J. Jr, Braunwald E., Shillingford J.P. (1970) Pressure-flow relations and vascular impedance in man. Cardiovasc. Res. 4:405–417

    Article  PubMed  CAS  Google Scholar 

  15. Nichols W. W., M. F. O’Rourke, and C. Hartley. McDonald’s Blood Flow in Arteries; Theoretical, Experimental and Clinical Principles, 4th ed. A Hodder Arnold Publication, 564 pp., 1998

  16. Olufsen M. S. (1999) Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. 276:H257–H268

    PubMed  CAS  Google Scholar 

  17. Olufsen M. S., Peskin C. S., Kim W. Y., Pedersen E. M., A. Nadim, and J. Larsen (2000) Numerical Simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28:1281–1299

    Article  PubMed  CAS  Google Scholar 

  18. Papaharilaou Y., Doorly D. J., Sherwin S. J., Peiro J., Griffith C., Cheshire N., Zervas V., Anderson J., Sanghera B., Watkins N., Caro C. G. (2002) Combined MR imaging and numerical simulation of flow in realistic arterial bypass graft models. Biorheology 39:525–531

    PubMed  CAS  Google Scholar 

  19. Ponzini R., Vergara C., Redaelli A., Veneziani A. (2006) Reliable CFD-based estimation of flow rate in haemodynamics measures. Ultrasound Med. Biol. 32(10):1545–1555

    Article  PubMed  Google Scholar 

  20. Sherwin S. J., Franke V., Peiró J., Parker K. (2003) One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47(3–4):217–250

    Article  Google Scholar 

  21. Snir M., S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman. MPI: The Complete Reference. Cambridge: MIT Press, 336 pp., 1995

  22. Spilker R. L., Feinstein J. A., Parker D. W., Reddy V. M., Taylor C. A. (2007) Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann. Biomed. Eng. 35(4):546–559

    Article  PubMed  Google Scholar 

  23. Steele B. N., Olufsen M. S., Taylor C. A. (2007) Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Comput. Methods Appl. Mech. Eng. 10:39–51

    Google Scholar 

  24. Stergiopulos N., Young D. F., Rogge T. R. (1992) Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25:1477–1488

    Article  PubMed  CAS  Google Scholar 

  25. Stroud J. S., Berger S. A., Saloner D. (2002) Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J. Biomech. Eng. 124:9–20

    Article  PubMed  CAS  Google Scholar 

  26. Taylor C. A., Hughes T. J. R., Zarins C. K. (1999) Effect of Exercise on Hemodynamic Conditions in the Abdominal Aorta. J. Vasc. Surg. 29(6):1077–1089

    Article  PubMed  CAS  Google Scholar 

  27. Urquiza S. A., Blanco P. J., Vénere M. J., Feijóo R. A. (2006) Multidimensional modelling for the carotid artery blood flow. Comput. Methods Appl. Mech. Eng. 195(33–36):4002–4017

    Article  Google Scholar 

  28. Veneziani A., Vergara C. (2004) Flow rate defective boundary conditions in haemodynamics simulations. Int. J. Numer. Methods Fluids 47(8–9):803–816

    Google Scholar 

  29. Vignon-Clementel I. E., Figueroaa C. A., Jansenc K. E., Taylor C. A. (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195:3776–3796

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation CI-TEAM grant, and computations were performed at PSC with the help of David O’Neal. We want also to thank specialist in Ultrasound diagnostic techniques Michael Kalt for invaluable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopold Grinberg.

Appendix A

Appendix A

In the following we derive the resistance–flow rate relationship in a network of five vessels, shown in Fig. 23.

Figure 23
figure 23

Sketch of 1D model of five arteries: one inlet and five outlets

The Q 1,2/Q 1,3 ratio is given by

$$ \frac{Q_{1,2}}{Q_{1,3}} = \frac{R_3-L_{1,3}K_{1,3}}{R_2-L_{1,2}K_{1,2}}. $$
(12)

Thus,

$$ R_3 = L_{1,3}K_{1,3}+\frac{Q_{1,2}}{Q_{1,3}} (R_2-L_{1,2}K_{1,2}). $$
(13)

Now we apply (6) to segments 3,5 to obtain

$$ P_5-P_3 = L_{3,5}K_{3,5}Q_{3,5} $$
(14)

and using the resistance boundary condition P j  = R j Q j , we get

$$ R_5Q_{3,5}-R_3Q_{1,3} = L_{3,5}K_{3,5}Q_{3,5}. $$
(15)

Next, we substitute R 3 in (15) by formula (13)

$$ R_5Q_{3,5}-Q_{1,3} \left(L_{1,3}K_{1,3}+\frac{Q_{1,2}}{Q_{1,3}} (R_2-L_{1,2}K_{1,2})\right) = L_{3,5}K_{3,5}Q_{3,5} $$
(16)

and, assuming that \(|L_jK_j| \ll 1\) and \(|L_jK_j| \ll R_j\), we obtain

$$ R_5Q_{3,5} - R_2 Q_{1,2} = L_{3,5}K_{3,5}Q_{3,5} \approx 0. $$
(17)

From Eq. (17) we obtain

$$ \frac{Q_{3,5}}{Q_{1,2}} \approx \frac{R_2}{R_5}. $$

Similarly, we can obtain

$$ \frac{Q_{3,4}}{Q_{1,2}} \approx \frac{R_2}{R_4}. $$

So far we derived the Q i /Q j relations for a steady flow but similarly to the previous case, we can derive the \(\hat{Q}_{i,k}/\hat{Q}_{j,k}\) relations for unsteady flow and show that

$$ \frac{\hat{Q}_{i,k}}{\hat{Q}_{j,k}} \approx \frac{R_j}{R_i} $$

and therefore

$$ \frac{Q_{i}(t)}{Q_{j}(t)} \approx \frac{R_j}{R_i}. $$

By neglecting friction we can extend the RQ relation to the network with an arbitrary number of segments. For example, using the model provided in Fig. 23 we obtain:

$$ R_1Q_{\rm in} \approx R_2 Q_{1,2} \approx R_3 Q_{1,3} \approx R_5 Q_{3,5} \approx R_4 Q_{3,4} \ldots $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinberg, L., Karniadakis, G.E. Outflow Boundary Conditions for Arterial Networks with Multiple Outlets. Ann Biomed Eng 36, 1496–1514 (2008). https://doi.org/10.1007/s10439-008-9527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9527-7

Keywords

Navigation